POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Application of Nano-Cellulose Based Composites in Lithium-Sulfur Batteries |
HUANG Shaoyan, XIU Huijuan, WANG Zhixiong, FAN Sha, WANG Simin, DENG Zili, LI Na, LI Jinbao*
|
School of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China |
|
|
Abstract Lithium-sulfur battery has high theoretical specific capacity and energy density, which makes it a promising candidate as the next-generation energy storage device. In the research and development of lithium-sulfur batteries, nanocellulose-based materials have attracted extensive attention due to their unique network structure and the physicochemical properties. The present paper starts by introducing the basics of lithium-sulfur battery, and further analyzes the challenges hindering its commercialization. The paper also reviews the latest research of nanocellulose-based materials in lithium-sulfur batteries, from the perspectives of the unique structure and excellent performance of nanocellulose. It can be concluded that nanocellulose-based materials can serve as separators, cathode materials, and other components, and can alleviate critical problems is Li-S battries including ‘shuttle effect', ‘volume expansion' and ‘lithium dendrite', and also significantly improve the electrochemical performance and service life. Finally, the challenges to nanocellulose-based composites and the outlook for cellulose-based lithium-sulfur batteries are discussed.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:Key Research and Development Projects of Zhejiang Province (2022C02074). |
|
|
1 Li G, Chen Z, Lu J. Chem, 2018, 4(1), 3. 2 Zhao M, Li B Q, Zhang X Q, et al. ACS Central Science, 2020, 6(7), 1095. 3 Hofmann A F, Fronczek D N, Bessler W G, et al. Journal of Power Sources, 2014, 259, 300. 4 Li S Q, Leng D, Li W Y, et al. Energy Storage Materials, 2020, 27, 279. 5 Zhang B W, Sun B, Fu P, et al. Membranes (Basel), 2022, 12(8), 790. 6 Wang Z, Lee Y H, Kim S W, et al. Advanced Materials, 2020, 33(28), 2000892. 7 Chen Y, Zhang L, Yang Y, et al. Advanced Materials, 2021, 33(11), 2005569. 8 Zhu Y C, Wu C J, Yu D M, et al. China Pulp & Paper, 2020, 39(9), 74(in Chinese). 朱亚崇, 吴朝军, 于冬梅, 等. 中国造纸, 2020, 39(9), 74. 9 Shen M, Gao K, Xiang F, et al. Journal of Power Sources, 2020, 450, 227640. 10 Hu Y, Chen W, Lei T Y, et al. Advanced Energy Materials, 2020, 10(17), 1. 11 Zhang Z J, Fang Z H, Xiang Y Y, et al. Carbohydrate Polymers, 2021, 255, 117469. 12 Xiao R, Yang S, Yu T, et al. Batteries & Supercaps, 2022, 5(4), 1. 13 Hundekar P, Jain R, Lakhnot A S, et al. Journal of Applied Physics, 2020, 128(1), 1. 14 He T J, Zeng G F, Feng C, et al. Journal of Power Sources, 2020, 448, 227469. 15 Li L B, Shan Y H. New Carbon Materials, 2021, 36(2), 336. 16 Li H, Ma S, Li J, et al. Energy Storage Materials, 2020, 26, 203. 17 Li Y J, Zhou Y, Muhammad Y, et al. ACS Materials Letters, 2021, 3(8), 1130. 18 Nechyporchuk O, Belgacem M N, Bras J. Industrial Crops & Products, 2016, 93, 2. 19 Habibi Y, Lucia L A, Rojas O J. Chemical Reviews, 2010, 110(6), 3479. 20 Avcioglu, Nermin H. World Journal of Microbiology and Biotechnology, 2022, 38(5), 1. 21 Choi S M, Rao K M, Zo S M, et al. Polymers (Basel), 2022, 14(6), 1080. 22 Nursaule B, Yerkezhan Y, Nurbol T, et al. ACS Applied Energy Mate-rials, 2023, 6, 588. 23 Li J X, Dai L Q, Wang Z F, et al. Journal of Energy Chemistry, 2022, 67(4), 736. 24 Li W, Wang S, Fan Z, et al. Materials Today Energy, 2021, 21, 100813. 25 Wu S L, Shi J Y, Nie X L, et al. Carbohydrate Polymers, 2022, 285, 119201. 26 Fan Y, Yang Z, Hua W, et al. Advanced Energy Materials, 2017, 7, 1602380. 27 Zhang Y J, Qu J, Ji Q Y, et al. Carbon, 2019, 155, 353. 28 Liu T, Sun X, Sun S, et al. Electrochimica Acta, 2019, 295, 684. 29 Gao N, Li B, Zhang Y J, et al. ACS Applied Materials & Interfaces, 2021, 13(48), 57193. 30 Huang J Q, Chong W G, Zhang B, et al. Materials Today Communications, 2021, 28, 102566. 31 Kim J H, Lee Y H, Cho S J, et al. Energy & Environmental Science, 2019, 12, 177. 32 Chien Y C, Pan R, Lee M T, et al. Journal of The Electrochemical Society, 2019, 166(14), A3235. 33 Muddasar M, Beaucamp A, Culebras M, et al. International Journal of Biological Macromolecules, 2022, 219, 788. 34 Deng C, Wang Z, Wang S, et al. Journal of Materials Chemistry A, 2019, 7(20), 12381. 35 Luo J, Guan K K, Lei W, et al. Journal of Materials Science & Technology, 2022, 122(27), 101. 36 Wang J, Zhang W H, Wei H J, et al. Sustainable Energy and Fuels, 2022, 6(12), 2901. 37 Li J H, Xiong Z S, Wu Y J, et al. Journal of Materials Chemistry A, 2022, 73(10), 513. 38 Park J W, Jo S C, Kim M J, et al. NPG Asia Materials, 2021, 13(1), 1. 39 Bai L L, Ma J S, Song H Q, et al. ACS Applied Materials and Interfaces, 2021, 13(49), 59174. 40 Liu Y E, Zhang M G, Gao Y N, et al. Journal of Alloys and Compounds, 2022, 898, 162821. 41 Fang L X, Chen J S, Wang P, et al. Diamond & Related Materials, 2022, 126, 109137. 42 Bharti V K, Pathak A D, Sharma C S, et al. Electrochimica Acta, 2022, 422, 140531. 43 Zhang M, Lu C X, Bi Z H, et al. ChemElectroChem, 2021, 8(5), 895. 44 Huang M Z, Hu T, Zhang Y T, et al. ACS Applied Materials and Interfaces, 2022, 14(15), 17959. 45 Chang C H, Chung S H, Manthiram A, et al. Advanced Sustainable Systems, 2017, 1, 1. 46 Zhu Q C, Ye C, Mao D Y. Nanomaterials, 2022, 12(20), 3612. 47 Zhang Y, Chen R, Wang S, et al. Energy Storage Materials, 2020, 25, 145. 48 Xu S, Kwok C, Zhou L, et al. Advanced Functional Materials, 2020, 31, 2004239. 49 Liang X, Wang L L, Wu X L, et al. Journal of Energy Chemistry, 2022, 73(10), 370. 50 Shan Y H, Li B L, Yang X Y, et al. ACS Applied Energy Materials, 2021, 4(5), 5101. 51 Liu J, Li Y Y, Xuan Y X, et al. ACS Applied Materials and Interfaces, 2020, 12(15), 17592. |
|
|
|