POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
A Review of Toughening Epoxy Resin Matrix by Core-Shell Particles |
ZHU Gangjian, LI Wenxiao*
|
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China |
|
|
Abstract Due to its excellent performance, epoxy resin (EP) is widely used in coatings, adhesives, and composite materials. However, its high crosslinking density and poor ability to resist crack initiation and propagation have made EP toughening modification a hotspot for the global research community. Core-shell particles (CSP) added as a second phase to EP can achieve significant toughening effects without significantly compromising the thermodynamic properties. Compared with traditional toughening agents, CSP has a promising development prospect. Based on an explanation of the different toughening mechanisms of EP, this article introduces the toughening mechanism, main types, and preparation methods of CSP toughening agents. The research results on the effects of CSP material, particle size, and core-shell ratio on the mechanical properties of EP are evaluated, and the impact of using CSP toughening methods on the rheological behavior and curing kinetics of EP as a composite material matrix is analyzed.
|
Published: 25 May 2024
Online: 2024-05-28
|
|
Fund:National Key Research and Development Program of China (2019YFB1505204). |
|
|
1 Robertson I D, Yourdkhani M, Centellas P J, et al. Nature, 2018, 557(7704), 223. 2 Kang Y, Guan J, Numata K, et al. Nature Communications, 2019, 10(1), 3786. 3 Wing T, Ambrose C. Journal of Materials Science, 2019, 54, 13938. 4 Wang L, Tan Y, Wang H, et al. Chemical Physics Letters, 2018, 699, 14. 5 Dong Q, Declan C, Clemence R, et al. Journal of Materials Science, 2017, 52(8), 4493. 6 Giannakopoulos G, Masania K, Taylor A. Journal of Materials Science, 2011, 46(2), 327. 7 Erich D B, Daniel B K, Adam D R, et al. Journal of Materials Science, 2016, 51(5), 2347. 8 Dong Q, Ivankovic A. Polymer, 2015, 66, 16. 9 Zotti A, Zuppolini S, Zarrelli M, et al. Adhesives-Applications and Pro-perties, 2016, 257. 10 Huang Y, Kinloch A J. Journal of Materials Science, 1992, 27(10), 2763. 11 Carolan D, Ivankovic A, Kinloch A J, et al. Polymer, 2016, 97(5), 179. 12 Li S P, Wu Q S, Zhu H J, et al. Polymers, 2017, 9(12), 684. 13 Liu S L, Fan X S, He C B. Composites Science and Technology, 2016, 125, 132. 14 Ning N. Core/shell nanoparticles-their synthesis and use for epoxy resin and carbon fiber composite toughening. Ph. D. Thesis, Donghua University, China, 2022(in Chinese). 宁娜. 纳米核壳粒子的设计制备及其对环氧树脂与碳纤维复合材料增韧机理和性能的研究. 博士学位论文, 东华大学, 2022. 15 Wang Y, Wang Y S. Polymer Materials Science & Engineering, 2012, 28(2), 23(in Chinese). 汪源, 王源升. 高分子材料科学与工程, 2012, 28(2), 23. 16 Xu C, Qu T, Zhang X, et al. RSC Advances, 2019, 9(15), 8654. 17 Lin K F, Shieh Y D. Journal of Applied Polymer Science, 1998, 70(12), 2313. 18 Huang L, Li L J, Li J, et al. Polymer Materials Science & Engineering, 2020, 36(10), 36(in Chinese). 黄力, 李林娟, 李坚, 等. 高分子材料科学与工程, 2020, 36(10), 36. 19 Ren X M. Study on the critical shell thickness of SiO2-PBA core-shell particles with controllable shell thickness in epoxy resin toughening system. Ph. D. Thesis, Hubei University, China, 2017(in Chinese). 任小明. 壳层厚度可控的SiO2-PBA核壳粒子增韧环氧树脂体系临界壳层厚度的研究. 博士学位论文, 湖北大学, 2017. 20 Mahdi M K, Azam J A. Journal of Applied Polymer Science, 2019, 136(4), 46988. 21 Kelnar I, Zhigunov A, Kapr à L, et al. RSC Advances, 2020, 10(19), 11357. 22 Dong Q, Carolan D, Rouge C, et al. International Journal of Adhesion and Adhesives, 2018, 81, 21. 23 Tsang W L, Taylor A C. Journal of Materials Science, 2019, 54(22), 13938. 24 Bajpai A, Martin R, Faria H, et al. Materials Today:Proceedings, 2020, 34(1), 210. 25 Mousavi S R, Amraei I A. High Performance Polymers, 2016, 28(7), 809. 26 Zhu Z W, Chen H X, Chen Q H, et al. Nano Materials Science, 2022, 4(3), 251. 27 Liu J, Thompson Z J, Sue H J, et al. Macromolecules, 2010, 43(17), 7238. 28 George S M, Puglia D, Kenny J M, et al. Industrial & Engineering Chemistry Research, 2013, 52(26), 9121. 29 Ding H, Zhao B J, Mei H G, et al. Polymer Engineering and Science, 2019, 59(11), 2387. 30 Klingler A, Bajpai A, Wetzel B. Engineering Fracture Mechanics, 2018, 203, 81. 31 Lagunas C, Morancho J M, Salla J M, et al. Reactive and Functional Polymers, 2014, 83, 132. 32 Santiago D, Serra A. Polymers, 2022, 14(11), 2228. 33 Foix D, Ramis X, Serra A, et al. Polymer International, 2012, 61(5), 727. 34 Fei X M, Wei W, Tang Y T, et al. European Polymer Journal, 2017, 90, 431. 35 Park H, Choe Y. International Journal of Polymer Science, 2021, 2021, 9984174. 36 Liu Chengwu, Xu Feng, Jiang Zecheng, et al. Materials Today Communications, 2022, 33, 104849. 37 Keller A, Chong H M, Taylor A C, et al. Composites Science and Technology, 2017, 147, 78. 38 Ning N, Liu W, Hu Q, et al. Composites Science and Technology, 2020, 199, 108364. 39 Naveen Thirunavukkarasu, Abdelatif Laroui, Peng Shuqiang, et al. Materials & Design, 2023, 225, 111510. 40 Ning Na, Wang Ming, Zhou Gang, et al. Composites Part B, 2022, 234, 109749. 41 Pramanik M, Fowler E W, Rawlins J W. Journal of Coatings Technology and Research, 2014, 11(2), 143. 42 Dong Q, Ivankovic A. Polymers and Polymer Composites, 2019, 27(10), 168. |
|
|
|