INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of High Voltage Lithium Cobalt Oxide Cathode Materials |
CHEN Xi, YANG Chunli*, HUANG Jianglong, ZHANG Hao, WANG Jing
|
Functional Materials Laboratory, College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China |
|
|
Abstract Because of its high specific capacity, discharge platform, and compaction density, lithium cobalt oxide (LiCoO2) is still the dominant cathode material for lithium-ion batteries in portable electronics such as 3C. With the development of lightweight and miniaturization of portable electronics, the requirements for high energy density and long-cycle performance of lithium-ion batteries with lithium cobalt oxide system have increased. Effective enhancement of energy density is an urgent problem requiring a solution. The methods to improve energy density include developing new active materials with high specific capacity, increasing the compaction density, and increasing the working voltage of materials. Amongst these methods, the most effective approach is to increase the working voltage. At the upper charge cut-off voltage (>4.4 V), the amount of lithium removed fromlithium cobalt oxide increases and more active Li+ participates in the de-intercalation process, which significantly improves the actual gram capacity. However, several detrimental issues including irreversible phase transitions and interfacial side reactions emerge, which result in the degradation of material performance and the rapid loss of capacity. To solve these problems, researchers have modified high-voltage lithium cobalt oxide in recent years. These modifications primarily focus on bulk doping and surface coating. Bulk doping improves the structural stability of the material and delays the collapse of layered structures. Surface coating plays a significant role in alleviating the interfacial side reactions. The effective control of phase transitions and interfacial side reactions by modification is of great significance to promote the commercial development of high-voltage lithium cobalt oxide. This review focuses on the high-voltage lithium cobalt oxide material. Its structure, preparation method, and performance degradation at high working voltage are summarized. Additionally, recent developments in bulk doping and coating modification of high-voltage lithium cobalt oxide are introduced in detail and the effects of modification on the structure and electrochemical performance of the material are deeply analyzed. Finally, the development of high-voltage lithium cobalt oxide cathode materials is also discussed.
|
Published:
Online: 2023-07-10
|
|
Fund:Independent Research and Development Project of State Key Laboratory of Green Building in Western China (LSZZ202020), Natural Science Basic Research Program of Shaanxi Province (2021JQ-497), Shaanxi Provincial Education Department Service Local Special Plan Project (20JC022), and Natural Science Special Project of Xi'an University of Architecture and Technology (ZR20026). |
|
|
1 Goodenough J B, Park K S. Journal of the American Chemical Society, 2013, 135(4), 1167. 2 Wang K, Wan J J, Xiang Y X, et al. Journal of Power Sources, 2020, 460(1), 228062. 3 Gu R, Ma Z T, Cheng T, et al. ACS Applied Materials Interfaces, 2018, 10(37), 31271. 4 Lyu Y C, Wu X, Wang K, et al. Advanced Energy Materials, 2020, 11(2), 2000982. 5 Kim C, Yang Y, Ha D, et al. RSC Advances, 2019, 9(55), 31936. 6 Xu T T, Su J Y, Ha E, et al. Materials Letters, 2020, 274, 128006. 7 Bakierska M, Świętosławski M, Chudzik K, et al. Solid State Ionics, 2018, 317, 190. 8 Palaniyandy N, Rambau K, Musyoka N, et al. Journal of the Electrochemical Society, 2020, 167(9), 090510. 9 Zhu J, Cao G L, Li Y J, et al. Scripta Materialia, 2020, 178, 51. 10 Välikangas J, Laine P, Hietaniemi M, et al. Applied Sciences, 2020, 10(24), 8988. 11 Kim H, Kim S B, Park D H, et al. Energies, 2020, 13(18), 4808. 12 Jung C H, Shim H, Eum D, et al. Journal of the Korean Ceramic Society, 2020, 58(1), 1. 13 Zhao X X, An L W, Sun J C, et al. Journal of Electroanalytical Chemistry, 2018, 810, 1. 14 Julien C M, Mauger A. Energies, 2020, 13(23), 6363. 15 Zhai X H, Zhang P P, Zhou J F, et al. Materials Reports, 2021, 35(7), 07056 (in Chinese). 翟鑫华, 张盼盼, 周建峰, 等. 材料导报, 2021, 35(7), 07056. 16 Dou S. Journal of Solid State Electrochemistry, 2013, 17(4), 911. 17 Barbosa J C, Goncalves R, Costa C M, et al. Energies, 2021, 14(11), 3145. 18 Na Y, Sun X H, Fan A R, et al. Chinese Chemical Letters, 2021, 32(3), 973. 19 Li W J, Xu H Y, Yang Q, et al. Energy Storage Science and Technology, 2020, 9(2), 448 (in Chinese). 李文俊, 徐航宇, 杨琪, 等. 储能科学与技术. 2020, 9(2), 448. 20 Kalluri S, Yoon M, Jo M, et al. Advanced Energy Materials, 2017, 7(1), 1601507. 21 Freitas B, Siqueira Jr J, Da Costa L, et al. Journal of the Brazilian Chemical Society, 2017, 28(11), 2254. 22 Kumar B K, Pollet M, Artemenko A, et al. Journal of Solid State Che-mistry, 2013, 198, 45. 23 Ekwongsa C, Rujirawat S, Butnoi P, et al. Radiation Physics and Che-mistry, 2020, 175, 108545. 24 Yan S J, Zhang M G, Tian H W, et al. Rare Metal Materials and Engineering, 2007, 36(3), 440 (in Chinese). 闫时建, 张敏刚, 田文怀, 等. 稀有金属材料与工程, 2007, 36(3), 440. 25 Lin M, Hu J Q, Zhu Z Z. Journal of Xiamen University, 2016, 55(3), 371 (in Chinese). 林妹, 胡家琦, 朱梓忠. 厦门大学学报, 2016, 55(3), 371. 26 Lu X, Sun Y, Jian Z L, et al. Nano Letters, 2012, 12(12), 6192. 27 Chen Z H, Dahn J R. Electrochimica Acta, 2004, 49(7), 1079. 28 Amatucci G G, Tarascon J M, Klein L C. Journal of the Electrochemical Society, 1996, 143(3), 1114. 29 Wang L, Maxisch T, Ceder G. Chemistry of Materials, 2007, 19, 543. 30 Mukai K, Uyama T, Nonaka T. ACS Inorganic Chemistry, 2020, 59(15), 11113. 31 Yang Z X, Li R G, Deng Z H. Scientific Reports, 2018, 8(1), 863. 32 Cai Y. Research on 4.5 V high voltage LiCoO2 cathode material for high power density lithium ion battery. Master's Thesis, University of Electronic Science and Technology of China, China, 2017 (in Chinese). 蔡宇. 高能量密度锂离子电池4.5 V高电位钴酸锂正极材料研究. 硕士学位论文, 电子科技大学, 2017. 33 Ven A V D, Aydinol M K, Cede G. Journal of the Electrochemical Society, 1998, 145(6), 2149. 34 Vetter J, Novák P, Wagner M R, et al. Journal of Power Sources, 2005, 147, 269. 35 Choi J, Alvarez E, Arunkumar T A, et al. Electrochemical and Solid-State Letters, 2006, 9(5), A241. 36 Venkatraman S, Manthiram A. Journal of Solid State Chemistry, 2004, 177(11), 4244. 37 Zhang J N. Failure analysis and modification research on high voltage LiCoO2. Ph. D. Thesis, Chinese Academy of Sciences, China, 2018 (in Chinese). 张杰男. 高电压钴酸锂的失效分析与改性研究. 博士学位论文, 中国科学院大学, 2018. 38 Smith A J, Dahn H M, Burns J C, et al. Journal of the Electrochemical Society, 2012, 159(6), A705. 39 Lu Z Y, Wang H T, Kong D S, et al. Nature Communications, 2014, 5(1), 4345. 40 Shen B. Research on capacity loss mechanisms and modifications of lithium cobalt oxides cathodes. Ph. D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese). 申斌. 正极钴酸锂材料的容量衰减机制及改性研究. 博士学位论文, 哈尔滨工业大学, 2017. 41 Sun C L, Liao X B, Xia F J, et al. ACS Nano, 2020, 14(5), 6181. 42 Chebiam R V, Kannan A M, Prado F, et al. Electrochemistry Communications, 2001, 3(11), 624. 43 Ruan D S, Li B, Mao L L, et al. Chinese Journal of Power Sources, 2020, 44(9), 1387 (in Chinese). 阮丁山, 李斌, 毛林林, 等. 电源技术, 2020, 44(9), 1387. 44 Kazda T, Vondrak J, Sedlarikova M, et al. Portugaliae Electrochimica Acta, 2013, 31(6), 331. 45 Kim S, Choi S, Lee K, et al. Physical Chemistry Chemical Physics, 2017, 19(5), 4104. 46 Zhu Z, Wang H, Li Y, et al. Advanced Materials, 2020, 32(50), 2005182. 47 Koyama Y, Arai H, Tanaka I, et al. Journal of Materials Chemistry A, 2014, 2(29), 11235. 48 Sathiyamoorthi R, Chandrasekaran R, Gopalan A, et al. Materials Research Bulletin, 2008, 43(6), 1401. 49 Xu L M, Wang K, Gu F, et al. Materials Letters, 2020, 277, 128407. 50 Nithya C, Thirunakaran R, Sivashanmugam A, et al. ACS Applied Materials Interfaces, 2012, 4(8), 4040. 51 Wan J J, Zhu J P, Xiang Y X, et al. Journal of Energy Chemistry, 2021, 54(3), 786. 52 Xu H Y, Xie S, Zhang C P, et al. Journal of Power Sources, 2005, 148, 90. 53 Kazda T, Vondrak J, Sedlaikova M, et al. ECS Transactions, 2014, 63(1), 65. 54 Hirooka M, Sekiya T, Omomo Y, et al. Journal of Power Sources, 2020, 463, 228127. 55 Jiang Y X, Zhou F, Wang C L, et al. Ionics, 2016, 23(3), 585. 56 Huang Y Y, Zhu Y C, Hao Y F, et al. Angewandte Chemie International Edition in English, 2021, 60(9), 4682. 57 Zhu X M, Shang K H, Jiang X Y, et al. Ceramics International, 2014, 40(7), 11245. 58 Needham S A, Wang G X, Liu H K, et al. Journal of Power Sources, 2007, 174(2), 828. 59 Liu A, Li J, Shunmugasundaram R, et al. Journal of the Electrochemical Society, 2017, 164(7), A1655. 60 Zhang J N, Li Q H, Ouyang C Y, et al. Nature Energy, 2019, 4(7), 594. 61 Zhang J N, Li Q H, Li Q, et al. Chinese Physics B, 2018, 27(8), 088202. 62 Chen M F, Chen P, Yang F, et al. Electrochimica Acta, 2016, 206, 356. 63 Valanarasu S, Chandramohan R. Journal of Materials Science, 2010, 45(9), 2317. 64 Xu X G, Wei Y J, Meng X, et al. Acta Physica Sincia, 2004, 53(1), 210 (in Chinese). 徐晓光, 魏英进, 孟醒, 等. 物理学报, 2004, 53(1), 210. 65 Gu R, Qian R C, Lyu Y C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(25), 9346. 66 Wang Y T, Cheng T, Yu Z E, et al. Journal of Alloys and Compounds, 2020, 842, 155827. 67 Valanarasu S, Chandramohan R, Thirumalai J, et al. Ionics, 2011, 18, 39. 68 Hasan F, Kim J, Song H, et al. Journal of Electrochemical Science and Technology, 2020, 11(4), 352. 69 Zou M J, Yoshio M, Gopukumar S, et al. Chemistry of Materials, 2003, 15(25), 4699. 70 Valanarasu S, Chandramohan R. Journal of Alloys and Compounds, 2010, 494, 434. 71 Yu J P, Han Z H, Hu X H, et al. Electrochimica Acta, 2014, 121, 301. 72 Sun L W, Zhang Z S, Hu X F, et al. Journal of the Electrochemical Society, 2019, 166(10), A1793. 73 Valanarasu S, Chandramohan R. Crystal Research and Technology, 2010, 45(8), 835. 74 Zhang M L, Tan M, Zhao H Y, et al. Applied Surface Science, 2018, 458, 111. 75 Liu Q, Su X, Lei D, et al. Nature Energy, 2018, 3(11), 936. 76 Wang L L, Ma J, Wang C, et al. Advanced Science, 2019, 6(12), 1900355. 77 Yu Y, Kong W, Yang W, et al. The Journal of Physical Chemistry C, 2021, 125(4), 2364. 78 Jung H G, Gopal N V, Prakash J, et al. Electrochimica Acta, 2012, 68, 153. 79 Cao J C, Xiao K S, Jiang F, et al. Mining Engineering, 2016, 36(4), 109 (in Chinese). 曹景超, 肖可颂, 姜锋, 等. 矿冶工程, 2016, 36(4), 109. 80 Jin Y, Lin P, Chen C H. Solid State Ionics, 2006, 177, 317. 81 Zhou A J, Dai X Y, Lu Y T, et al. ACS Applied Materials Interfaces, 2016, 8(49), 34123. 82 Zhang J C, Gao R, Sun L M, et al. Electrochimica Acta, 2016, 209, 102. 83 Cheng T, Cheng Q, He Y, et al. ACS Applied Materials Interfaces, 2021, 13(36), 42917. 84 Wang Y, Zhang Q H, Xue Z C, et al. Advanced Energy Materials, 2020, 10(28), 2001413. 85 Shim J H, Han J M, Lee J H, et al. ACS Applied Materials Interfaces, 2016, 8(19), 12205. 86 Cheng X, Qiang W J, Huang B X. Ceramics International, 2020, 46(16), 25935. 87 Li Z Y, Li A J, Zhang H R, et al. Energy Storage Materials, 2020, 29, 71. 88 Shim J H, Cho N H, Lee S. Electrochimica Acta, 2017, 243, 162. 89 Hwang B J, Chen C Y, Cheng M Y, et al. Journal of Power Sources, 2010, 195(13), 4255. 90 Xie M, Hu T, Yang L, et al. RSC Advances, 2016, 6(68), 63250. 91 Sheng S J, Chen G M, Hu B, et al. Journal of Electroanalytical Chemistry, 2017, 795, 59. 92 Zhao F, Tang Y F, Wang J S, et al. Electrochimica Acta, 2015, 174, 384. 93 Shao L, Zhou L, Yang L S, et al. Electrochimica Acta, 2019, 297, 742. 94 Iriyama Y, Kurita H, Yamada I, et al. Journal of Power Sources, 2004, 137(1), 111. 95 Dai X Y, Zhou A J, Xu J, et al. Journal of Power Sources, 2015, 298, 114. 96 Dai X, Wang L, Xu J, et al. ACS Applied Materials Interfaces, 2014, 6(18), 15853. 97 Wang F Q, Jiang Y, Lin S L, et al. Electrochimica Acta, 2019, 295, 1017. 98 Jayasree S S, Nair S, Santhanagopalan D. Chemistryselect, 2018, 3(10), 2763. 99 Nie K H, Sun X R, Wang J, et al. Journal of Power Sources, 2020, 470, 228423. 100 Shen B, Zuo P J, Li Q, et al. Electrochimica Acta, 2017, 224, 96. 101 Shim J H, Lee S, Park S S. Chemistry of Materials, 2014, 26(8), 2537. 102 Kim K C, Jegal J P, Bak S M, et al. Electrochemistry Communications, 2014, 43, 113. 103 Morimoto H, Awano H, Terashima J, et al. Journal of Power Sources, 2012, 211, 66. 104 Cho J, Kim T G, Kim C, et al. Journal of Power Sources, 2005, 146(1-2), 58. 105 Sun W, Xie M, Shi X, et al. Materials Research Bulletin, 2015, 61, 287. 106 Zhou A, Xu J, Dai X, et al. Journal of Power Sources, 2016, 322, 10. 107 Cao J, Hu G, Peng Z, et al. Journal of Power Sources, 2015, 281, 49. 108 Park J H, Cho J H, Lee E H, et al. Journal of Power Sources, 2013, 244, 442. 109 Chen H L, Wen Y H, Wang Y, et al. RSC Advances, 2020, 10(41), 24533. 110 Kobayashi H, Yuan G, Gambe Y, et al. ACS Applied Energy Materials, 2021, 4(9), 9866. 111 Hu B, Lou X B, Li C, et al. Journal of Power Sources, 2019, 438, 226954. 112 Wang Z G, Wang Z X, Guo H J, et al. Journal of Alloys and Compounds, 2015, 621, 212. 113 Wang Z G, Wang Z X, Guo H J, et al. Ceramics International, 2015, 41(1), 469. 114 Cheng T, Ma Z T, Qian R C, et al. Advanced Functional Materials, 2020, 31(2), 2001974. 115 Wang C W, Zhou Y, You J H, et al. ACS Applied Energy Materials, 2020, 3(3), 2593. 116 Cui Z Z, Wang Z Y, Zhai Y W, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(4), 2473. 117 徐世国, 靳亚珲, 栗志涛, 等. 中国专利, CN107342414A, 2017. 118 李政杰, 雷丹, 王平华, 等. 中国专利, CN109786738A, 2019. 119 田礼平, 刘人生, 陈强, 等. 中国专利, CN108011101A, 2018. 120 崔光磊, 马君, 王龙龙, 等. 中国专利, CN109659542B, 2019. 121 公伟伟, 周贵海, 李魁, 等. 中国专利, CN106058219A, 2016. 122 李玲, 阮丁山, 毛林林, 等. 中国专利, CN111620384A, 2020. 123 徐世国, 栗志涛, 宋健巍, 等. 中国专利, CN107644986A, 2018. 124 李栋梁, 刘亚飞, 陈彦彬, 等. 中国专利, CN109461891A, 2019. 125 廖达前, 唐朝辉, 朱健, 等. 中国专利, CN113247964B, 2021. 126 雷丹, 李阳兴. 中国专利, CN108123109B, 2018. 127 Liang J N, Chen D C, Adair K, et al. Advanced Energy Materials, 2020, 11(1), 2002455. 128 Lan J L, Zheng Q F, Zhou H B, et al. ACS Applied Materials Interfaces, 2019, 11(32), 28841. 129 Lei W, Deng X, Zuo X, et al. ACS Applied Energy Materials, 2021, 4(6), 5877. 130 Cui Z Y, Shi H B, Ding J Y, et al. Materials Letters, 2018, 228, 466. 131 Liu X, Tan Y, Wang W, et al. Nano Letters, 2020, 20(6), 4558. |
|
|
|