INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Recent Developments of Laser Texturing Technology on the Surface Structuring of Polycrystalline Silicon Solar Cells |
CHENG Jian, LIAO Jianfei, YANG Zhen, KONG Weichang, LIU Dun*
|
Center for Sino-UK Ultrafast Laser Processing Research, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China |
|
|
Abstract Solar energy is one of the most important substitutes for traditional fossil energy source due to its cleanness and sustainability, which can be absorbed and transferred into heat, and more importantly as electricity when converted via solar cell technology. Polycrystalline silicon solar cells are a widely adopted solar cell technology in the field of photovoltaic power generation. It is of great importance to overcome the problem faced by the solar cells, which is to reduce the incident light reflectivity of the solar cell panel surface in order to enhance the efficiency of the solar cells. In this paper, the light trapping principle is initially introduced, followed by the classifications of the commonly utilized surface texturing processes to reduce the undesired reflectivity. Specifically, laser related texturing methods are reported, as well as the analyses of the corresponding texturing effects on the surface of polycrystalline silicon prepared with different laser texturing methods. It is found that the laser-based hybrid micro-texturing technology overcomes the issues faced by the conventional direct laser texturing process. Furthermore, the effect of laser processing parameters on the surface texturing is analyzed, especially the corresponding light absorptance. Variation of the laser wavelength could affect the silicon surface morphology. Moreover, the tuning of key laser parameters, such as laser repetition rate and laser scanning speed can influence the density of the micro dimples on the surface of the solar cells. The depth of the ablated micro craters can also be tailored by altering the laser power and the pulse energy, as well as modulating the laser incident angle, energy distribution, and pulse duration. Among the typical microtextures, the V-shaped textures are more effective than the U-shaped textures, and 2D light trapping structures prevail over the 1D ones. In addition, the effects of chemical post-processing to enhance the micro structuring are also discussed. The enhancement of the performance of the polycrystalline silicon solar cells is achieved by improving or even diminishing the defects caused by heat-affected zone. Finally, a brief overview and prospect of the laser texturing technology on the surface structuring of polycrystalline silicon solar cell are given based on the above review.
|
Published:
Online: 2023-03-27
|
|
Fund:Equipment Pre-research Fund of CMC (6141C25) and Natural Science Foundation of Hubei Province of China (General Program) (2019CFB509). |
|
|
1 Chen L. Studies on enhancement efficiency of thin film silicon solar cells with high-efficiency surface light-trapping structure. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2017 (in Chinese). 陈乐. 高效表面陷光结构提升硅薄膜太阳能电池效率的研究. 博士学位论文, 上海交通大学, 2017. 2 Chen L, Wang Q K, Shen X Q, et al. Chinese Physics B, 2015, 24(10), 190. 3 Goetzberger A, Hoffmann V U. In: Photovoltaic Solar Energy Generation, Springer Berlin Heidelberg. Berlin, 2005, pp. 1465. 4 Dobrzański L A, Drygała A, Gołombek K, et al. Journal of Materials Processing Technology, 2008, 201(1-3), 291. 5 Liang Q C, Qiao F, Yang J, et al. Materials China, 2019(5), 505 (in Chinese). 梁启超, 乔芬, 杨健, 等. 中国材料进展, 2019(5), 505. 6 Wei S Y, Sun W H, Chen Z J, et al. Chin Sci Bull, 2016, 61(16), 1748 (in Chinese). 魏世源, 孙伟海, 陈志坚, 等. 科学通报, 2016, 61(16), 1748. 7 Zhao J, Wang A, Campbell P, et al. Electron Devices IEEE Transactions on, 1999, 46(10), 1978. 8 Spiegel M, Gerhards C, Huster F, et al. Solar Energy Materials and Solar Cells, 2002, 74(1), 175. 9 Zechner C, Hahn G, Jooss W, et al. In: 26th IEEE Photovoltaic Specialists Conference. Piscataway, USA, 1997, pp. 243. 10 Wang K, Feng S, Xu H, et al. Science China Technological Sciences, 2012, 55(6), 1509. 11 Chen S R, Liang Z C, Wang D L. AIP Advances, 2016, 6(3), 35320. 12 Wu X W, Li J Y. Journal of Inorganic Materials, 2020, 36(6), 9 (in Chinese). 武晓玮, 李佳艳. 无机材料学报, 2020, 36(6), 9. 13 Liu S, Niu X, Shan W, et al. Solar Energy Materials and Solar Cells, 2014, 127, 21. 14 Yoo J, Yu G, Yi J. Solar Energy Materials and Solar Cells, 2011, 95(1), 2. 15 Yoo J, Cho J, Ahn S, et al. Thin Solid Films, 2013, 546, 275. 16 Yoo J, Cho J, Han K, et al. Journal of the Korean Physical Society, 2012, 60(12), 2071. 17 Zhang T, Guo Y G, Qu X Y, et al. Journal of Synthetic Crystals, 2017, 46(10), 2090 (in Chinese). 张婷, 郭永刚, 屈小勇, 等. 人工晶体学报, 2017, 46(10), 2090. 18 Lee K, Ha M, Kim J H, et al. Solar Energy Materials and Solar Cells, 2011, 95(1), 66. 19 Park K M, Lee M B, Shin J W, et al. Solar Energy, 2013, 91, 37. 20 Zhang H, Lu Y. Applied Laser, 2015, 35(6), 699 (in Chinese). 张华, 陆燕. 应用激光, 2015, 35(6), 699. 21 Green M A, Keevers M J. Progress in Photovoltaics, 1995, 3(3), 189. 22 Viniūnas A. Journal of Laser Micro Nanoengineering, 2013, 8(3), 244. 23 Xu D F, Yin S Q, Xiao Z G, et al. Advanced Materials Research, 2012, 476, 1798. 24 Esther B V Y, Sriram R, Nilesh J V. Journal of Laser Micro Nanoengineering, 2015, 10(3), 334. 25 Chen X H, Li X, Wu C, et al. Applied Sciences, 2019, 9(9), 1882. 26 Zhang H, Zhou Y D, Lu Y. Laser Journal, 2016, 37(2), 94 (in Chinese). 张华, 周一丹, 陆燕. 激光杂志, 2016, 37(2), 94. 27 Xu J M, Chen C, Zhang T F, et al. Materials, 2017, 10(3), 260. 28 Pei S H, Xue W, Feng A X, et al. Applied Laser, 2013, 33(3), 318 (in Chinese). 裴绍虎, 薛伟, 冯爱新, 等. 应用激光, 2013, 33(3), 318. 29 Binetti S, Donne A L, Rolfi A, et al. Applied Surface Science, 2016, 371, 196. 30 Feng A X, Zhuang X H, Xue W, et al. Infrared and Laser Engineering, 2015, 44(2), 461 (in Chinese). 冯爱新, 庄绪华, 薛伟, 等. 红外与激光工程, 2015, 44(2), 461. 31 Radfar B, Es F, Turan R. In: 33rd European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam, 2017, pp. 706. 32 Radfar B, Es F, Turan R. Renewable Energy, 2020, 145, 2707. 33 Jia T D, Feng A X, Chen H, et al. Chinese Journal of Lasers, 2018, 45(10), 75 (in Chinese). 贾天代, 冯爱新, 陈欢, 等. 中国激光, 2018, 45(10), 75. 34 Lyu X Z, Ji L F, Wu Y, et al. Chinese Journal of Lasers, 2015, 42(4), 78 (in Chinese). 吕晓占, 季凌飞, 吴燕, 等. 中国激光, 2015, 42(4), 78. 35 Hua X S, Zhang Y J, Wang H W. Solar Energy Materials and Solar Cells, 2010, 94(2), 258. 36 Zhang W H, Song J Y, Zhang H L, et al. Journal of Shenyang Ligong University, 2014, 33(4), 62 (in Chinese). 张卫红, 宋建宇, 张红丽, 等. 沈阳理工大学学报, 2014, 33(4), 62. 37 Li R. Laser beam shaping and using it in the femtosecond laser micromachining. Master's Thesis, Xi'an Institute of Optics and Precision Mechanics of CAS, China, 2015 (in Chinese). 李睿. 光束整形及其在飞秒激光微加工领域的应用研究. 硕士学位论文, 中国科学院研究生院(西安光学精密机械研究所), 2015. 38 Hermann S, Dezhdar T. Journal of Applied Physics, 2010, 108(11), 1363. 39 Voisiat B, Indrišiūnas S, Raiukaitis G, et al. Medčiagotyra, 2014, 20(2), 157. 40 Dobrzański L A, Drygała A. Materials Science Forum, 2012, 706, 829. 41 Zielke D, Sylla D, Neubert T, et al. IEEE Journal of Photovoltaics, 2013, 3(2), 656. 42 Dobrzański L A, Dryga A A. Journal of Achievements in Materials & Ma-nufacturing Engineering, 2008, 29(1), 7. 43 Wang X M, Zhao R Q, Shen H, et al. Laser & Optoelectronics Progress, 2010, 47(1), 76 (in Chinese). 王学孟, 赵汝强, 沈辉, 等. 激光与光电子学进展, 2010, 47(1), 76. 44 Choi P, Kim J, Kim M, et al. Journal of the Korean Physical Society, 2015, 67(6), 991. 45 Kim K, Kim T, Park H, et al. Applied Surface Science, 2013, 264, 404. 46 Dobrzański L A, Drygaa A, Panek P, et al. Archives of Materials Science and Engineering, 2009, 38(1), 6. 47 Abbott M, Cotter J. Progress in Photovoltaics: Research and Applications, 2006, 14(3), 225. 48 Wang K X, Feng S M, Xu H T, et al. Acta Optica Sinica, 2012, 32(3), 288 (in Chinese). 王坤霞, 冯仕猛, 徐华天, 等. 光学学报, 2012, 32(3), 288. 49 She P, Zeng M L. Materials Reports, 2012, 26(24), 16 (in Chinese). 佘鹏, 曾梦麟. 材料导报, 2012, 26(24), 16. 50 Ding J M, Zou S, Choi J, et al. Solar Energy Materials and Solar Cells, 2020, 214, 110587. 51 Yang B, Lee M. Applied Surface Science, 2013, 284, 565. 52 Macdonald D H, Cuevas A, Kerr M J, et al. Solar Energy, 2004, 76(1-3), 277. 53 Janke S, Pingel S, Litzenburger B, et al. In: 28th Eu Pvsec. Berlin, Germany, 2013, pp. 3251. 54 Ha S H, Kim J H, Park S J. Molecular Crystals and Liquid Crystals, 2017, 645(1), 231. 55 Kim H S, Ha S H, Park S J, et al. Science of Advanced Materials, 2018, 10(5), 690. |
|
|
|