POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Protein Piezoelectric Materials |
LI Zihan1, ZHAO Chao1, WANG Wenyu1, JIN Xin2, NIU Jiarong1, ZHU Zhengtao1,3, LIN Tong1,4
|
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China 2 School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China 3 Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid City SD57701, United States 4 Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia |
|
|
Abstract In recent years, the piezoelectric effect of piezoelectric materials has shown excellent practical application prospects in realizing the effective utilization of environmental mechanical energy, which has received extensive attention. Compared with traditional piezoelectric materials, protein piezoelectric materials are biological materials with good biocompatibility, biodegradability and mechanical durability. They have shown unique research value in the fields of biomedicine and tissue engineering. However, the piezoelectric mechanism and application fields of protein piezoelectric materials have not been fully explored, and it is worth further studying. This article mainly introduces the piezoelectric mechanism of three protein piezoelectric materials (namely keratin, collagen and silk fibroin), the preparation of piezoelectric devices and their application research in piezoelectric nanogenerators, biosensors and ultrasonic transducers. The article also looks forward to the challenges and future application prospects of protein piezoelectric materials, and provides a reference for the research and application of protein piezoelectric materials.
|
Published:
Online: 2022-06-09
|
|
Fund:National Natural Science Foundation of China (51573136) and Key Project of the Natural Science Foundation of Tianjin (20JCZDJC00350). |
|
|
1 Kim D H, Shin H J, Lee H, et al. Advanced Functional Materials, 2017, 27(25), 1700341. 2 Zurbuchen A, Pfenniger A, Stahel A, et al. Annals of Biomedical Engineering, 2013, 41, 131. 3 Inaba K, Fujii I, Nakashima K, et al. Key Engineering Materials, 2013, 582,80. 4 Zhang S, Xia R, Shrout T R. Journal of Electroceramics, 2007, 19(4),251. 5 Saravanan S, Sameera D K, Moorthi A, et al. International Journal of Biological Macromolecules, 2013, 62(3), 481. 6 Guo T, Yang X, Deng J, et al. Journal of Materials Science, 2019, 30(1),91. 7 Lin C W, Chen Y K, Lu M, et al. Polymers, 2018, 10(9), 62. 8 Bo T H, Qing X Y, You W F, et al. Biomedical & Environmental Sciences: BES, 2015, 28(3),178. 9 Dou Y, Zhang B, He M, et al. Polymers, 2015, 7(3),580. 10 Dou Y, Zhang B, He M, et al. Journal of Macromolecular Science, 2014, 51(12),1009. 11 Chorsi M T, Curry E J, Chorsi H T, et al. Advanced Materials, 2019,31(1),1802084. 12 Martin A J P. Proceedings of the Physical Society, 2002, 53(53),186. 13 Tao K, Makam P, Aizen R, et al. Science, 2017, 358(6365), 9756. 14 Serrado Nunes J, Wu A, Gomes J, et al. Applied Physics A, 2009, 95(3), 875. 15 Liu H, Zhong J, Lee C, et al. Applied Physics Reviews, 2018, 5(4), 041306. 16 Xu H, Ma Z, Yang Y. Journal of Materials Science, 2014, 49(21), 7513 17 Khosa M A, Ullah A. Journal of Hazardous Materials, 2014, 278, 360. 18 Buchanan J H. Biochemical Journal, 1977, 167(2),489. 19 Yamauchi K, Yamauchi A, Kusunoki T, et al. Journal of Biomedical Materials Research, 1996, 31(4), 439. 20 Xie H, Li S, Zhang S. Green Chemistry, 2005, 7(8), 606. 21 Wedemeyer W J, Welker E, Narayan M, et al. Biochemistry, 2009,39(15),4207. 22 Mckittrick J, Chen P Y, Bodde S G, et al. JOM, 2012, 64(4), 449. 23 Jia R Y, He Y F, Wang R M, et al. Chemical Bulletin, 2008, 14(12),265(in Chinese). 贾如琰, 何玉凤, 王荣民, 等.化学通报, 2008, 14(12), 265. 24 Menefee E. Journal of the Electrochemical Society, 1972, 119(8), 227. 25 Menefee E. Annals New York Academy of Sciences, 1974, 238(1), 53. 26 Fukada E, Zimmerman R L, Mascarenhas S. Biochemical & Biophysical Research Communications, 1975, 62(2), 415. 27 Rossi D D, Domenici C, Pastacaldi P. IEEE Transactions on Electrical Insulation, 1986, 21(3),511. 28 Mitchell T W, Feughelman M. Kolloid-Zeitschrift und Zeitschrift für Polymere, 1969, 229(2),124. 29 Feughelman M, Lyman D, Menefee E, et al. International Journal of Biological Macromolecules, 2003, 33(1), 149. 30 Ren J L, Fu L H, Qiu H Y. China Leather, 2003, 23(4),17(in Chinese). 任俊莉, 付丽红, 邱化玉. 中国皮革, 2003, 23(4), 17. 31 Shoulders M D, Raines R T. Annual Review of Biochemistry, 2019, 78(1), 929. 32 Zhou L Z, Chen L, Li L, et al. Chinese Journal of Pharmaceutical Industry, 2004, 35(12),761(in Chinese). 周丽珍, 陈玲, 李琳, 等. 中国医药工业杂志, 2004, 35(12),761. 33 Fukada E, Yasuda I. Journal of the Physical Society of Japan, 1957, 12(10), 1158. 34 Fukada E, Hara K. Journal of the Physical Society of Japan, 1969, 26(3), 777. 35 Fukada E, Yasuda I. Japanese Journal of Applied Physics, 1964, 3(2), 117. 36 Chepel V F, Lavrent-Ev V V. Polymer Mechanics, 1978, 14(4), 574. 37 Ghosh S, Mei B Z, Lubkin V, et al. Journal of Biomedical Materials Research, 1998, 39(3), 453. 38 Marino A A, Spadaro J A, Fukada E, et al. Calcified Tissue Internatio-nal, 1980, 31(3),257. 39 Karem N, Lira-Olivares J, Ferreira A M, et al. Materials Science Forum, 2007, 544, 981. 40 Kalinin S V, Rodriguez B J, Shin J, et al. Ultramicroscopy, 2006, 106(4),334. 41 Minary-Jolandan M, Yu M F. Nanotechnology, 2009, 20(8),085706. 42 Hou A Q, Shi Y Q, Xie K L. Knitting Industry, 2009, 4(5),63(in Chinese). 侯爱芹, 史雅琪, 谢孔良. 针织工业, 2009, 4(5),63. 43 Wang J P, Hu J N, Bai X F, et al. Fine and Specialty Chemicals, 2004, 12(12),13(in Chinese). 王佳培, 胡建恩, 白雪芳,等. 精细与专用化学品,2004,12(12),13. 44 Koh L D, Cheng Y, Teng C P, et al. Progress in Polymer Science, 2015, 46,86. 45 Harvey E N. Science, 1939, 89(2316), 460. 46 Eiichi F. Journal of the Physical Society of Japan,1956,11(12), 1301. 47 Fukada E, Ueda H, Rinaldi R. Biophysical Journal, 1976, 16(8),911. 48 Yucel T, Cebe P, Kaplan D L. Advanced Functional Materials, 2011, 21(4), 779. 49 Zhao Y W. Composition regulation and process modification of bismuth layered ferroelectric materials. Master's Thesis, Northwest University of Technology, China, 2017(in Chinese). 赵玉伟. 铋层状铁电材料的成分调控与工艺改性研究. 硕士学位论文, 西北工业大学, 2017. 50 Miyamoto T, Sakabe H, Inagaki H. Bulletin of the Institute for Chemical Research, 1987, 65(2),109. 51 Ghosh S K, Mandal D. Nano Energy, 2016, 28(8),356. 52 Silva C C, Lima C G A, Pinheiro A G, et al. Physical Chemistry Chemical Physics, 2001, 3(18), 4154. 53 Ghosh S K, Mandal D. ACS Sustainable Chemistry & Engineering, 2017, 5,8836. 54 Kim K N, Chun J, Chae S A, et al. Nano Energy, 2015, 14,87. 55 Joseph J, Saraswathi S, Agarwal A, et al. In:2016 IEEE Sensors, Orlando, 2016, pp. 1. 56 Joseph J, Singh S G, Vanjari S R K. IEEE Sensors Journal, 2017, 17(24),8306. 57 Joseph J, Singh S G, Vanjari S R K. IEEE Electron Device Letters, 2018, 39, 1. |
|
|
|