POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Solution-Processable Symmetric A-D-A Small Molecule Donor Materials for Organic Solar Cells |
FAN Hongzhi, ALTAN Bolag*, Alata, NING Jun, Tana, Tegusi
|
Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China |
|
|
Abstract Since the 20th century, with the advancement of science and technology, the shortage of traditional fossil energy has brought a series of environmental problems and the development of pollution-free renewable energy has become a hot-topic research all over the world. Traditio-nal solar cells based on inorganic semiconducting materials such as silicon, have demerits of complicated production process, highcost and environmental pollution. In the past decades, the research of organic small molecule solar cells with good photoelectric performance have received extensive attention in the field of organic photovoltaics, presenting huge potential in modern photoelectrical applications.At present, the power conversion efficiency of organic solar cells based on small molecules have been boosted over 16%—17%. As an important part of the active layer in organic solar cells, electron donor materials are key components for further industrial application in organic photovoltaics. Solution-processable small molecule donor materials effectively combined with electron acceptor materials are able to not only optimize the light absorption capacity of the device but also adjust the electrochemical energy level of both materials, which is critical to improve the photoelectric conversion efficiency of solar cells. At present, organic small molecule donor materials can be classified into asymmetric electron push-pull molecule and symmetric donor-acceptor-donor (or acceptor-donor-acceptor molecule, A-D-A molecule). Among them, symmetrical molecules based on thiophene derivatives have get much attention due to their good conjugated planar structure, high charge transfer mobility and molecular structure modifiability. In this paper, solution-processable donor materials with symmetric A-D-A structures, including oligopolythiophene, benzodithiophene, diketopyrrolopyrrole, dithienosilole and porphyrin donor materials, are summarized. The aim of this paper is to expound the research progress of existing donor materials, compare and analyze the advantages and disadvantages of various small molecule donor materials, and forecast the development trend and research prospect of small molecule donor materials in the field of organic photovoltaics.
|
Published:
Online: 2022-05-24
|
|
Fund:National Natural Science Foundation of China (21762033), Natural Science Foundation of Inner Mongolia (2021MS02025 ,2021 MS05047), High-level Funding Project of Ministry of Human Resources and Social Security of China, High-level Project of Inner Mongolia Normal University (2015YJRC001). |
|
|
1 Li G, Zhu R, Yang Y. Nature Photonics, 2012, 6, 153. 2 Meyer F. Progress in Polymer Science, 2015, 47, 70. 3 Michael G. Nature, 2001, 414, 338. 4 Zhang T H, Piao L Y, Zhao S L, et al. Chinese Journal of Organic Chemistry, 2011, 31(2), 260 (in Chinese). 张天慧,朴玲钰,赵谡玲,等.有机化学,2011, 31(2), 260. 5 Ragoussi M E, Torres T. Chemical Communications, 2015, 51, 3957. 6 Freitag M, Teuscher J, Saygili Y, et al. Nature Photonics, 2017, 11, 372. 7 Gong J W, Sumathy K, Qiao Q Q, et al. Renewable and Sustainable Energy Reviews, 2017, 68, 234. 8 Zhao J B, Li Y K, Yang G F, et al. Nature Energy, 2016, 1, 1. 9 Kim Y J, Baek J Y, Ha J J, et al. Journal of Materials Chemistry C, 2014, 2(25), 4937. 10 Kim Y J, Pake K H, Ha J J, et al. Physical Chemistry Chemical Physics, 2014, 6(37), 19874. 11 Su Y W, Lan S C, Wei K H. Materials Today, 2012, 15, 554. 12 Li G, Wang S H, Liu T, et al. Journal of Materials Chemistry C, 2018,6,12601. 13 He Z C, Zhong C M, Huang X, et al. Advanced Materials, 2011, 23, 4636. 14 Goh C, Kline R J, McGehee M D, et al. Applied Physics Letters, 2005, 86(122110), 1. 15 Thompson B C, Fréchet J M J. Angewandte Chemie International Edition, 2008, 47, 58. 16 Dong Y Y, Yang H, Wu Y, et al. Journal of Materials Chemistry A, 2019, 7, 2261. 17 Wu Q, Deng D, Zhou R M, et al. ACS Applied Materials & Interfaces, 2020, 12, 25100. 18 Sun R, Wu Y, Guo J, et al. Science China Chemistry, DOI: 10.1007/s11426-020-9753-x. 19 Wu Q, Deng D, Lu K, et al. Chinese Chemical Letters, 2017, 28, 2065. 20 Hu P R, Ouyang Y, Liang T, et al. Energy & Environmental Science, 2017, 10, 2017. 21 An Q S, Wang J, Gao W, et al. Science Bulletin, 2020, 65, 538. 22 Liu L, Kan Y Y, Gao K, et al. Advanced Materials, DOI: 10.1002/adma.201907604. 23 Shehzad R A, Iqbal J, Khan M U, et al. Computational and Theoretical Chemistry, 2020, 1181, 112833. 24 Cheng P, Li G, Zhan X W, et al. Nature Photonics, 2018, 12, 131. 25 Patra D, Huang T Y, Chiang C C, et al. ACS Applied Materials Interfaces, 2013, 5, 9494. 26 Hawks S A, Deledalle F, Yao J Z, et al. Advanced Energy Materials, 2013, 3, 1201. 27 Stoltzfus D M, Donaghey J E, Armin A, et al. Chemical Reviews, 2016, 116, 12920. 28 Miao J H, Meng B, Ding Z C, et al. Journal of Materials Chemistry A, 2020, 8, 10983. 29 Lin Y Z, Ma L C, Li Y F, et al. Advanced Energy Materials, 2014, 4(1), 1300626. 30 Du Z K, Chen W C, Chen Y H, et al. Journal of Materials Chemistry A, 2014, 2, 15904. 31 Huang H L, Chen H J, Long J, et al. Journal of Power Sources, 2016, 326, 438. 32 Ni W, Li M M, Kan B, et al. Organic Electronics, 2014, 15, 2285. 33 He G R, Li Z, Wan X J, et al. Journal of Materials Chemistry A, 2013, 1, 1801. 34 Chen Y S, Wan X J, Long G K. Accounts of Chemical Research, 2013, 46(11), 2645. 35 Chao P J, Liu L Z, Qu J F, et al. Dyes and Pigments, 2019, 162, 746. 36 Liu Y S, Wan X J, Wang F, et al. Advanced Energy Materials, 2011, 1, 771. 37 Li Z, He G R, Wan X J, et al. Advanced Energy Materials, 2012, 2, 74. 38 Kan B, Li M M, Zhang Q, et al. Journal of the American Chemical Society, 2015, 137, 3886. 39 Duan T N, Gao J, Xu T L, et al. Journal of Materials Chemistry A, 2020, 8, 5843. 40 Xu T L, Chang Y Y, Yan C Q, et al. Journal Name, 2020, 4(6), 2680. 41 Fitzner R, Mena-Osteritz E, Walzer K, et al. Advanced Functional Materials, 2015, 25(12), 1845. 42 Duan T A, Gao J, Babics M, et al. Solar RRL, 2020, 4(3), 1900472. 43 Farahat M E, Patra D, Lee C H, et al. ACS Applied Materials Interfaces, 2015, 7, 22542. 44 Zhou J Y, Wan X J, Liu Y S, et al. Journal of the American Chemical Society, 2012, 134, 16345. 45 Kan B, Zhang Q, Li M M, et al. Journal of the American Chemical Society, 2014, 136, 15529. 46 Zhang Z J, Miao J H, Ding Z C, et al. Nature Communications, 2019, 10, 3271. 47 Wang Z G, Xu X P, Li Z J, et al. Advanced Electronic Materials, 2016, 2, 1600061. 48 Sun K, Xiao Z Y, Lu S R, et al. Nature Communications, 2015, 6, 6013. 49 Tang H, Chen H Y, Yan C Q, et al. Advanced Energy Materials, 2020, 10(27), 2001076. 50 Qin J Z, An C B, Zhang J Q, et al. Science China Materials, 2020, 63, 1142. 51 Jung M, Seo D, Kwak K, et al. Dyes and Pigments, 2015, 115, 23. 52 Vegiraju S, Hsieh C M, Huang D Y, et al. Dyes and Pigments, 2016, 133, 280. 53 Lee J W, Choi Y S, Jo W H. Organic Electronics, 2012, 13, 3060. 54 Duan X W, Xiao M J, Chen J H, et al. ACS Applied Materials Interfaces, 2015, 7, 18292. 55 Zhang Y M, Tan H, Xiao M J, et al. Organic Electronics, 2014, 151, 173. 56 Privado M, Malhotra P, de la Cruz P, et al. Solar RRL, 2020, 4(4), 1900471. 57 Sun Y M, Welch G C, Leong W L, et al. Nature Materials, 2011, 11, 44. 58 Chen B, Yang Y, Cheng P, et al. Journal of Materials Chemistry A, 2015, 3, 6894. 59 Zhou J Y, Wan X J, Liu Y S, et al. Chemistry of Materials, 2011, 23, 4666. 60 Ni W, Li M M, Liu F, et al. Chemistry of Materials, 2015, 27, 6077. 61 Ye D D, Li X D, Yan L, et al. Journal of Materials Chemistry A, 2013, 1, 7622. 62 Li W, Deng W Y, Wu K L, et al. Journal of Materials Chemistry C, 2016, 4, 1972. 63 Huang C Y, Liao X F, Gao K, et al. Chemistry of Materials, 2018, 30, 5429. 64 Sun J, Ma X L, Zhang Z H, et al. Advanced Materials, 2018, 30(16), 1707150. 65 Yue W, Zhao Y, Shao S Y, et al. Journal of Materials Chemistry, 2009, 19, 2199. 66 Li M M, Ni W, Feng H R, et al. Chinese Journal of Chemistry, 2015, 33, 852. 67 Wessendorf C D, Schulz G L, Mishra A, et al. Advanced Energy Mate-rials, 2014, 4(14), 1400266. 68 Wang J L, Liu K K, Liu S, et al. ACS Applied Materials Interfaces, 2017, 9(23), 19998. 69 Bai H T, Wang Y F, Cheng P, et al. ACS Applied Materials Interfaces, 2014, 6, 8426. 70 Wang Y C, Chang M J, Kan B, et al. ACS Applied Energy Materials, 2018, 1, 2150. 71 Xia T, Li C, Ryu H S, et al. Chemistry-A European Journal, 2020, 26(54), 12411. 72 Gao K, Miao J S, Xiao L G, et al. Advanced Materials, 2016, 28, 4727. 73 Wang H D, Xiao L G, Yan L, et al. Chemical Science, 2016, 7, 4301. 74 Huang Y Y, Li L S, Peng X B, et al. Journal of Materials Chemistry, 2012, 22, 21841. 75 Qin H M, Li L S, Guo F Q, et al. Energy Environmental Science, 2014, 7, 1397. 76 Gao K, Li L S, Lai T Q, et al. Journal of the American Chemical Society, 2015, 137(23), 7282.
|
|
|
|