MATERIALS AND SUSTAINABLE DEVELOPMENT:ENVIRONMENT-FRIENDLY MATERIALS AND MATERIALS FOR ENVIRONMENTAL REMEDIATION |
|
|
|
|
|
Structure and Performance of Multilayer Graphene Oxide Membrane and Its Application in Water Treatment: a Review |
YAO Qingda1,2, WEN Huitao1,3, YANG Changkai3, LIANG Yongxian1,2, WANG Xiaozhuo1,2, DAN Weihua1,3
|
1 Fujian Key Laboratory of Green Design and Manufacture of Leather, Jinjiang 362271, China 2 Xingye Leather Technology Co., Ltd., Jinjiang 362261, China 3 National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China |
|
|
Abstract The pollution of industrial wastewater to the environment and the harm to human body are becoming more and more serious, and this problem needs to be dealt with urgently. Among many industrial wastewater treatment methods, membrane treatment is widely used because of its good selectivity and separation efficiency. Membrane treatment, including ultrafiltration, nanofiltration, reverse osmosis and positive osmosis, is mainly based on the principles of size screening and electrostatic exclusion. However, traditional membrane materials, such as polyvinylidene fluoride, polysulfone and polyamide, have some defects, for instance, low rejection rate of pollutants, poor mechanical strength and poor chlorine resistance, which make membrane treatment face enormous difficulties and pressures. In recent years, the research and application of graphene materials have promoted the development of membrane materials. Graphene oxide separation membranes have become one of the research hotspots due to their excellent comprehensive properties. The multilayer structure assembled by graphene oxide nanosheets has shown great potential in enhancing the separation performance of membrane. Unlike graphene oxide modified conventional separation membranes, multilayer graphene oxide membranes exhibit superior physical and mechanical properties and chemical stability, and can be improved by structural design such as layer number, oxidation degree, modification status and interlayer spacing. The permeability of multilayer graphene oxide membrane is related to the number of separated layers, and increasing the number of membrane layers can improve their penetration resistance and selectivity. The number of layers, hydrophilicity and charge characteristic of GO are determined by the oxidation degree of graphene, plus, the increase of reduction degree is beneficial to the improvement of membrane permeability, while the oxidation degree is beneficial to the improvement of separation performance. The modification of GO membrane can change the charge characteristic, thus enhancing the interaction between GO and target molecules or ions. The structure of GO nanochannels affect the morphology and transport of water molecules, and the molecular dynamics can simulate and predict the separation performance of multilayer GO membrane. Here the preparation methods of multi-layer graphene oxide membranes are briefly introduced, and the relationship between structure control and separation performance of graphene oxide membranes is discussed. The effects of layer number, oxidation degree, modification and interla-yer spacing of graphene oxide membranes on separation performance are introduced in detail. The separation performance of multilayer graphene oxide membranes is simulated and analyzed by molecular dynamics. The application progress of multilayer graphene oxide membrane in removing heavy metal ions, desalination and organic matter is reviewed, and the opportunities and challenges in water treatment are prospected.
|
Published: 14 July 2020
|
|
Fund:This work was financially supported by the Quanzhou City Science and Technology Program of China (2018G001). |
About author:: Qingda Yao, deputy director of Fujian Key Laboratory of Green Design and Manufacturing of Leather, Xingye Leather Technology Co., Ltd. Graduated from Northeastern University in 2015, majoring in materials science and engineering. Now he is mainly engaged in the research on functional leather and graphene-based composite materials. Weihua Dan, researcher of National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Plus, director of Fujian Key Laboratory of Green Design and Manufacturing of Leather, Xingye Leather Leather Technology Co., Ltd. Now he is mainly engaged in the research of green leather production, green design and manufacture of high-performance leather, and collagen-based biomaterials. |
|
|
1 |
Arumugham T, Amimodu R, Kaleekkal N J, et al. Journal of Environmental Sciences, 2019, 82, 57.2 Nakagawa K, Sera T, Kunimastsu M, et al. Separation and Purification Technology, 2019, 219, 222.3 Ghafri B A, Bora T, Sathe P, et al.Applied Catalysis B: Environmental, 2018, 233, 136.4 Yuan B, Sun H, Zhao S, et al. Separation and Purification Technology, 2019, 220, 162.5 Benkhaya S, Achiou B, Ouammou M, et al. Materials Today Communications, 2019, 19, 212.6 Huadib B, Gomes V, Shi J, et al. Separation and Purification Technology, 2018, 190, 143.7 Gu J, Ren C, Zong X, et al. Ceramics International, 2016, 42(10), 12427.8 Mohtor N H, Othman M H, Bakar S A, et al. Chemosphere, 2018, 208, 595.9 Liu J, He K, Tang S, et al. Separation and Purification Technology, 2019, 217, 118.10 Wei Y, Zhang Y, Gao X, et al.Carbon, 2018, 139, 964.11 Kadhom M, Deng B. Applied Materials Today, 2018, 11, 219.12 Liu G, Shen J, Liu Q, et al. Journal of Membrane Science, 2018, 548, 548.13 Ma Q, Ren X, Pang L, et al. Gold Bulletin, 2018, 51(1), 27.14 Rokmana A W, Asrinani A, Suhendar H, et al. Journal of Physics: Conference Series, 2018, 1011(1), 1.15 David C T, Lin L, Grossman J C. Nano Letters, 2016, 16(2), 1027.16 Li S, Gao B, Wang Y, et al. Desalination, 2019, 464, 94.17 Mahalingam D, Kim D, Nunes S. MRS Advances, 2017, 46, 2505.18 Wang J, Gao X, Wang J, et al. ACS Applied Materials & Interfaces, 2015, 7, 4381.19 Mahdavi H, Rahimi A. Desalination, 2018, 433, 94.20 Rastgar M, Bozorg A, Shakeri A, et al. Chemical Engineering Research and Design, 2018, DOI: 10.1016/j.cherd.2018.11.010.21 Suroto B J, Sembiring H F, Fathurrahman M T, et al. Journal of Physics: Conference Series, 2018, DOI: 10.1088/1742-6596/1080/1/012020.22 Ibrahim A F, Lin Y S.Chemical Engineering Science, 2018, 190, 312.23 Zeynali R, Ghasemazadeh K, Sarand A B, et al.Separation and Purification Technology, 2018, 200, 169.24 Tsou C H, An Q F, Lo S C, et al. Journal of Membrane Science, 2015, 477, 93.25 Cote L J, Kim Z, Zhang C, et al. Soft Matter, 2010, 6, 6096.26 Kim J, Cote F, Kim W, et al. Journal of American Chemical Society, 2010, 132, 8180.27 Ermakova E V, Ezhov A A, Branchikov A E, et al. Journal of Colloid and Interface Science, 2018, DOI: 10.1016/j.jcis.2018.06.086.28 Gascho J L, Costa S F, Recco A A, et al. Journal of Nanomaterials, 2019, DOI: 10.1155/2019/5963148.29 François A V, Alejandra M V, Tabary N, et al. Materials Science & Engineering C, 2019, 100, 554.30 Fu J, Zhang M, Liu L, et al. Materials Letters, 2019, 236, 69.31 Lee S M, Jeong H, Kim N H, et al. Advanced Composite Materials, 2018, 27(5), 457.32 Chen W, Liu P, Liu Y, et al. Chemical Engineering Journal, 2018, 353,115.33 Kang H, Shi J, Liu L, et al. Applied Surface Science, 2018, 428, 990.34 Wen L L, Shen Q. Materials Chemistry and Physics, 2018, 213, 455.35 Li P, Chen K, Zhao L, et al. Composites Part B, 2019, 166, 663.36 Jilani A, Othman M H, Ansari M O, et al. Journal of Molecular Liquids, 2018, 253, 284.37 Hashemi M, Omidi M, Muralidharan B, et al. Acta Biomaterialia, 2018, 65, 376.38 Mona A A. Ain Shams Engineering Journal, 2018, DOI: 10.1016/j.asej.2018.08.001.39 Mukherjee R, Bhunia P, De S. Journal of Cleaner Production, 2018, DOI: 10.1016/j.jclepro.2018.12.162.40 Wei Y, Zhang Y, Gao X, et al. Carbon, 2016, 108, 568.41 Shao F, Xu C, Ji W, et al. Desalination, 2017, 423, 21.42 Wansuk C, Jungkyu C, Joona B, et al. ACS Applied Materials & Interfaces, 2013, 23(5), 12510.43 Mahmoudian M, Kochameshki M G, Hossenzadeh M. Journal of Environmental Chemical Engineering, 2018, 6, 3122.44 Zhao J, Zhu Y, Pan F, et al. Journal of Membrane Science, 2015, 487, 162.45 Zhu D, Guo D, Zhang L, et al. Sensors & Actuators: B. Chemical, 2018, DOI: 10.1016/j.snb.2018.10.151.46 Hu M, Mi B. Journal of Membrane Science, 2014, 469, 80.47 Liu C, Wang W, Li Y, et al. Journal of Membrane Science, 2019, 576, 48.48 Wang T, Lu J, Mao L, et al. Journal of Membrane Science, 2016, 515, 125.49 Jose P P, Kala M S, Kalarikkal N, et al. Materials Today: Proceedings, 2018, 5(8), 16306.50 Prerna B, Singh P A, Dhirendra B. Journal of Phhysical Chemistry C, 2017, 121, 9847.51 Setiadji S, Nuryadin B W, Ramadhan H, et al. IOP Conference Series: Materials Science and Engineering, 2018, 434, 012079.52 Amadei C A, Montessori A, Kadow J P, et al. Environment Science and Technology, 2017, 51, 4280.53 Huang M, Tang Z, Yang J. Diamond & Related Materials, 2019, 94,73.54 Wang G, Jia L, Hou B, et al. New Carbon Mater, 2015, 30, 30.55 Ye N, Wang Z, Wang S, et al.Environment Science and Pollution Research, 2018, 25, 10956.56 Huang H, Joshi R K, Silva K K, et al. Journal of Membrane Science, 2019, 572, 12.57 Wei N, Peng X, Xu Z. ACS Applied Materials & Interfaces, 2014, 6, 5877.58 Khorramdel H, Dabiri E, Tabrizi F F, et al. Separation and Purification Technology, 2019, 212, 497.59 He L, Dumée L F, Feng C, et al. Desalination, 2015, 365, 126.60 Bano S, Mahmood A, Kim S J, et al. Journal of Material and Chemistry A, 2015, 3(5), 2065.61 Nan Q, Li P, Cao B. Applied Surface Science, 2016, 397, 521.62 Zhao S, Zhu H, Wang H, et al. Journal of Hazardous Materials, 2019, 366, 659.63 Lv J, Zhang G, Zhang H, et al. Chemical Engineering Journal, 2018, 352, 765.64 Yang E, Alayande A B, Kin C M, et al. Desalination, 2018, 426, 21.65 Gao B, Ansari A, Yi X, et al. Journal of Membrane Science, 2018, 552: 132.66 Hua D, Chuang T. Carbon, 2017, 122, 604.67 Hua D, Rai K, Zhang Y, et al. Chemical Engineering Science, 2017, 161, 341.68 Ganesh B M, Isloor A M, Ismail A F. Desalination, 2013, 313, 199.69 Yang K, Huang L, Wang Y, et al. New Journal of Chemistry, 2019, 43, 2846.70 Zhang Y, Huang L, Wang Y, et al. Polymers, 2019, 11(2), 188.71 Ganesh B M, Isloor A M, Ismail A F. Desalination, 2013, 313, 199.72 Yuan Y, Gao X, Wei Y, et al. Desalination, 2017, 405, 29.73 Surwade S P, Smirnov S N, Vlassiouk I V, et al. WNature Nanotechnology, 2015, 10(5), 459.74 Hosseini M, Azamat J, Hamid E N. Applied Surface Science, 2018, 427, 1000.75 Hosseini M, Azamat J, Hamid E N. Materials Chemistry and Physics, 2019, 223, 277.76 Nigiz F U. Desalination, 2018, 433, 164.77 Le L H, Trinh D X, Trung N B, et al. Carbon, 2017, 114, 519.78 Joshi R K, Carbone P, Wang F C, et al. Science, 2014, 343, 752.79 Abraham J, Vasu K S, Willliams C D, et al. Nature Nanotechnology, 2017, 12, 546.80 Wei S H, Tsou C H, Guzman M D, et al. Chemistry of Materials, 2014, 26(9), 2983.81 Rezania B, Severin N, Talyzin A V, et al. Nano Letters, 2014, 14, 3993.82 Zheng S, Tu J J, Urban S, et al. ACS Nano, 2017, 11, 6440.83 Bansal P, Panwar A S, Bahadur D, et al. Journal of Physical Chemistry: C, 2017, 121,9847.84 Babu J S, Sathian S P. Journal of Chemical Physics, 2011, 134, 194509.85 Zhu J, Tian M, Hou J, et al. Journal of Materials Chemistry: A, 2016, 4(5), 1980.86 Kochameshki M G, Marjani A, Mahmoudian M, et al. Chemical Engineering Journal, 2017, 309, 206.87 Xi Y, Hu J, Liu Z, et al. ACS Applied Materials & Interfaces, 2016, 8(24), 15557.88 Liu H, Wang H, Zhang X. Advanced Materials, 2015, 27, 249.89 Ma J, Guo X, Ying Y, et al. Chemical Engineering Journal, 2017, 313, 890.90 Luo S, Wang J. Environment Science and Pollution Research Internatio-nal, 2018, 25(6), 5512.91 Zhou K G, Vasu K S, Cherian C T, et al.Nature, 2018, 7713(559), 236.92 Nair R R, Wu H A, Jayaram P N, et al. Science, 2012, 6067(335), 442.93 Wei N, Peng X, Xu Z. ACS Applied Materials & Interfaces, 2014, 6(8), 5877.94 Giri A K, Teixeira F, Cordeiro M N. Desalination, 2019, 460, 1.95 Guan K, Shen J, Liu G, et al. ACS Applied Material and Interfaces, 2016, 8(9), 6211.96 Dai H, Xu Z, Yang X. The Journal of Physical Chemistry C, 2016, 120, 22585.97 Chen B, Jiang H, Liu X, et al. The Journal of Physical Chemistry C, 2017, 121(2), 1321.98 Liu L, Zhang R, Liu Y, et al. Journal of Molecular Modeling, 2018, 24(6), 1.99 Yu T, Bai L, Xu Z, et al. Molecular Simulation, 2018, 44(10), 840.100 Willcox J A, Kim J H. The Journal of Physical Chemistry C, 2017, 121, 23659.101 Liu B, Wu R, Law A W, et al. Scientific Reports, 2016, DOI: 10.1038/srep38583.102 Gao Z, Giovambattista N, Sahin O. Scientific Reports, 2018, DOI: 10.1038/s41598-018-24358-3.103 Raghav N, Chakraborty S, Maiti P K. Physical Chemistry Chemical Phy-sics, 2015, 17, 20557.104 Qiao Z, Xie W, Cai X, et al. Chemical Physics Letters, 2019, 722, 153.105 David C T, Lin L, Grossman J C. Nano Letters, 2016, 16(2), 1027.106 Muscatello J, Jeager F, Matar O K, et al. ACS Applied Materials & Interfaces, 2016, 8(19), 12330.107 Deng J, You Y, Bustamante H, et al. Chemical Science, 2017, 8(3), 1701.108 Kargar M, Lohrasebi A. Physical Chemistry Chemical Physics, 2019, 21, 3304.109 Borg M K, Lockerby D A, Ritos K, et al. Journal of Membrane Science, 2018, 567(1),115.110 Yamada T, Matsuzaki R.Scientific Reports, 2018, DOI: 10.1038/s41598-017-18688-x.111 Samuel M S, Bhattacharya J, Raj S, et al. International Journal of Biological Macromolecules, 2019, 121, 285.112 Kaya A, Onac C, Alpoğuz H K, et al. Journal of Molecular Liquids, 2016, 219, 1124.113 Onaç C, Kaya A, Alpoğuz H K, et al. International Journal of Environmental Science and Technology, 2017, 14(11), 2423.114 Mcmanamon C, Burke A M, Holme J D, et al. Journal of Colloid and Interface Science, 2012, 369(1), 330.115 Rao Z, Feng K, Tang B, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2594.116 Rezaee R, Nassei S, Mahyia H, et al. Journal of Environmental Health Science & Engineering, 2015, DOI: 10.1186/s40201-015-0217-8.117 Qiu S, Wu L, Pan X, et al. Journal of Membrane Science, 2009, 342, 165.118 Zhang Y, Zhang S, Gao J, et al. Journal of Membrane Science, 2016, 515,230.119 Zhang Y, Zhang S, Chuang T. Environment Science and Technology, 2015, 49(16), 10235.120 Xu X, Yu Y, Lin N, et al. Water Science & Technology: Water Supply, 2018, 18(6), 2162.121 Kibechu R W, Ndinteh D T, Msagati T A, et al. Physics and Chemistry of the Earth, 2017, 100, 126.122 Zhang H, Bin L, Pan J, et al. Journal of Membrane Science, 2017, 539, 128.123 Jin L, Wang Z, Zheng S, et al. Journal of Membrane Science, 2018, 545, 11.124 Kai W. International Journal of Electrochemical Science, 2017, 12, 8306.125 Kang H, Wang W, Shi J, et al. Applied Surface Science, 2019, 465, 1103.126 Shao F, Dong L, Dong H, et al. Journal of Membrane Science, 2017, 525,9.127 Yang Y, Su K, Li Z. Journal of Membrane Science, 2018, 653, 718.128 Wu Z, Zhang C, Peng K, et al. Environmental Science & Engineering, 2018, 12 (3),1.129 Homem N C, Beluci N C, Amorim S, et al. Applied Surface Science, 2019, 486, 499.130 Cheng M, Huang L, Wang Y, et al. Journal of Materials Science, 2019, 54(1), 252.131 Abdi G, Alizadeh A, Zinadini S, et al. Journal of Membrane Science, 2018, 552, 326.132 Liu T, Yang B, Graham N, et al. Journal of Membrane Science, 2017, 542, 31.133 Xia S, Ni M. Journal of Membrane Science, 2015, 473, 54.
|
|
|
|