METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
First-principles Study on Effect of Alloying Elements on Co-precipitation of bcc-Cu/NiAl |
WU Di1, LIN Fangmin1, ZHANG Honglong2, SONG Meng3, YANG Yong1,*, YIN Zhaoliang4, ZHANG Xiaofeng1
|
1 Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling, Anhui University of Technology, Ma'anshan 243002, Anhui, China 2 Sinosteel Zhengzhou Research Institute of Steel Wire Products Co., Ltd., Zhengzhou 450001, China 3 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling Ministry of Education, Anhui University of Technology, Ma'anshan 243002, Anhui, China 4 Zouping Tiansheng Metal Technology Co., Ltd., Binzhou 256600,Shandong, China |
|
|
Abstract Co-precipitation of bcc-Cu and NiAl is an effective strengthening method commonly used for high strength steel. To investigate thoroughly the effects of different alloying elements on the co-precipitation of bcc-Cu/NiAl, the interfacial properties of element X (X= Cr, Co, Mo, W, V, Mn)-doped bcc-Cu(001)/NiAl(001) interfaces were studied based on first principles. The analysis of interfacial adhesion work, interfacial energy and electronic properties could clarify the significance of interfacial alloying. The calculated results show that when the Al-terminal bcc-Cu/NiAl interface dopes with Cr, Mo, W, V, Mn, the adhesion work increases, the interfacial energy decreases, promoting co-precipitation of bcc-Cu/NiAl, but the effects are more stronger when Al replaced by Mo, W or V. The interfacial stability of Ni-terminal interface is lower than that of Al-terminal interface. The electron structure analysis shows that Cr, Co, Mo, W, V, Mn have obvious hybridization of electron orbitals with Cu atoms at the interface and significantly strengthen the interatomic interaction when Al-terminal bcc-Cu/NiAl interface is doped. When Ni-terminal interface is doping, the hybridization degree is weak. After Mo, W and V doping the interface, the charge density at the interface increases, and stronger non-polar covalent bonds are formed between Cu atoms and alloying atoms.
|
Published: 10 May 2024
Online: 2024-05-13
|
|
Fund:Natural Science Foundation of Anhui Province (2108085QE214), the Open Fund of Anhui Provincial Key Laboratory of Metallurgical Engineering & Resources Recycling (SKF19-02) and Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education (JKF20-07). |
|
|
1 Suna L, Simmb T H, Martinc T L,et al. Acta Materialia, 2018, 149, 285. 2 Kim S H, Kim H, Kim N J. Nature, 2015, 518, 77. 3 Jiao Z B, Liu T C. Science Bulletin, 2017, 62, 1043. 4 Lee H, Jo M C, Sohn S S,et al. Acta Materialia, 2018, 147, 247. 5 Sun Z, Song G, Ilavsky J,et al. Materials Research Letters, 2015, 3, 128. 6 Isheim D, Vaynman S, Fine M E,et al. Scripta Materialia, 2008, 59, 1235. 7 Wen Y R, Hirata A, Zhang Z W,et al. Acta Materialia, 2013, 61, 2133. 8 Kou H, Lu J, Li Y. Advanced Materials, 2014, 26, 5518. 9 Kan L Y, Ye Q B, Wang Q H,et al. Materials Science and Engineering: A, 2021, 802, 140678. 10 Mulholland M D, Seidman D N. Acta Materialia, 2011, 59, 1881. 11 Gao Y H, Liu S Z, Hu X B,et al. Materials Science and Engineering: A, 2019, 759, 298. 12 Monzen R, Iguchi M, Jenkins M L. Philosophical Magazine Letters, 2000, 80, 137. 13 Lee T H, Kim Y O, Kim S J. Philosophical Magazine, 2007, 87, 209. 14 Yang J M, Jeng S M, Bain K,et al. Acta Materialia, 1997, 45, 295. 15 Jiao Z B, Luan J H, Miller M K,et al. Materials Today, 2017, 20, 142. 16 Huang D, Yan J, Zuo X. Materials Characterization, 2019, 155, 109786. 17 Jiao Z B, Luan J H, Miller M K,et al. Scientific Reports, 2016, 6, 1. 18 Jiao Z B, Luan J H, Guo W,et al. Acta Materialia, 2016, 120, 216. 19 Jiao Z B, Luan J H, Miller M K,et al. Acta Materialia, 2015, 84, 283. 20 Xu S S, Liu Y W, Zhang Y,et al. Materials Research Letters, 2020, 8, 187. 21 Liu Q, Song H, Zhang J,et al. Materials Characterization, 2021, 171, 110754. 22 Jiao Z B, Luan J H, Zhang Z W,et al. Acta Materialia, 2013, 61, 5996. 23 Vanderbilt D. Physical Review B, 1990, 41, 7892. 24 Marlo M, Milman V. Physical Review B, 2000, 62, 2899. 25 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77, 3865. 26 Cao Y, Zhu P, Zhu J,et al. Computational Materials Science, 2016, 111, 34. 27 Li H, Cao Y, Zhou S,et al. Modern Physics Letters B, 2016, 30, 1650133. 28 Wang J, Enomoto M, Guo H,et al. Computational Materials Science, 2020, 172, 109351. 29 Tang Z, Hasegawa M, Nagai Y,et al. Physical Review B, 2002, 65, 195108. 30 Li Y, Gao Y, Xiao B,et al. Computational Materials Science, 2011, 50, 939. 31 Yang J, Huang J, Fan D,et al. Applied Surface Science, 2016, 384, 207. 32 Wu D, Yang Y, Zhang X F, et al. Acta Physica Sinica, 2022, 71(8), 086301(in Chinese). 吴迪, 杨永, 章小峰, 等. 物理学报, 2022, 71(8), 086301. 33 Han Y F, Dai Y B, Wang J,et al. Applied Surface Science, 2011, 257, 7831. 34 Ma L, Lu Y, Li S, et al. Applied Surface Science, 2017, 435, 863. 35 Liu Y, Xing J, Li Y,et al. Applied Surface Science, 2017, 405, 497. |
|
|
|