METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Mg-Ti on Peritectic Transformation and Shrinkage During Solidification of Peritectic Steel |
CAO Lei1, YANG Yiming1, WANG Guocheng1,2,*
|
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China 2 Liaoning Provinceial Key Laboratory of Metallurgy Engineering , Anshan 114051, Liaoning, China |
|
|
Abstract Using a high-temperature confocal laser scanning microscope, in-situ observation of the peritectic transformation phenomenon during the soli-dification process of peritectic steel and peritectic steel containing Mg-Ti was carried out. During the phase transition from L to δ, the number and size of δ phase precipitated from the L phase in peritectic steel containing Mg-Ti were smaller than those in peritectic steel without Mg-Ti. In the peritectic reaction stage, the starting temperature of the peritectic reaction of peritectic steel containing Mg-Ti was 12.3 ℃ lower than that of peritectic steel without Mg-Ti, which reduced the formation temperature of phase γ and inhibited its growth. The shrinkage of peritectic transformation should lead to an increase in surface roughness. Through surface roughness measurement, it was found that the surface roughness of peritectic steel containing Mg-Ti was reduced by 10% compared to peritectic steel without Mg-Ti. The solidification shrinkage characteristic index (RV) calculation found that under equilibrium and non-equilibrium solidification conditions, the solidification shrinkage characteristic index of peritectic steel containing Mg-Ti decreased by 2.79% and 3.25% compared to peritectic steel without Mg-Ti, respectively. Therefore, Mg-Ti treatment is an effective strategy to reduce peritectic transformation shrinkage, and thus alleviates the occurrence of surface cracks.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:National Natural Science Foundation of China (52174318). |
|
|
1 Li Y Q, Liu J H, Deng Z Q, et al. Acta Metallurgica Sinica, 2020, 56(10), 1335(in Chinese). 李亚强, 刘建华, 邓振强, 等. 金属学报, 2020, 56(10), 1335. 2 Azizi G, Thomas B, Zaeem M. Metallurgical and Materials Transactions B, 2020, 51(4), 1875. 3 Hong G, Liu H S, Dong Y N, et al. Journal of Iron and Steel Research, 2021, 33(12), 1270(in Chinese). 洪钢, 刘华松, 董延楠, 等. 钢铁研究学报, 2021, 33(12), 1270. 4 Balogun D, Roman M, Gerald II Rex E, et al. Metallurgical and Materials Transactions B, 2023, 54(3), 1326. 5 Long X, He S P, Wang Q. Journal of Iron and Steel Research, 2017, 29(7), 551(in Chinese). 龙潇, 何生平, 王谦. 钢铁研究学报, 2017, 29(7), 551. 6 Gao Y B, Guan M H, Zhang J B, et al. Steelmaking, 2022, 38(2), 49(in Chinese). 高宇波, 管蒙寒, 张建斌, 等. 炼钢, 2022, 38(2), 49. 7 Cao L. Iron & Steel, 2015, 50(2), 38(in Chinese). 曹磊. 钢铁, 2015, 50(2), 38. 8 Li X, Liu Y, Zhang H C, et al. Ironmaking & Steelmaking, 2023, 50(4), 336. 9 Mondragón J J R, Trejo M H, Román M, et al. ISIJ International, 2008, 48(4), 454. 10 Trejo M H, Lopez E A, Mondragon J J R, et al. Metals and Materials International, 2010, 16(5), 731. 11 Konishi J, Militzer M, Samarasekera I V, et al. Metallurgical and Materials Transactions B, 2002, 33(3), 413. 12 Saleem S, Vynnycky M, Fredriksson H. Metallurgical and Materials Transactions B, 2017, 48(3), 1625. 13 An J Z, Cai Z Z, Cheng B, et al. Ironmaking & Steelmaking, 2023, 50(4), 410. 14 Guo J L, Wen G H, Pu D Z, et al. Materials, 2018, 11, 571. 15 Xu J F. Analyses of relation between compositions and perietctic reaction for regular carbon steels during the solidification process. Master’s Thesis, Chongqing University, China, 2013(in Chinese). 徐建飞. 普碳钢成分与凝固过程包晶反应的关系研究. 硕士学位论文, 重庆大学, 2013. 16 Guo J L. Characterization of initial solidification shrinkage and crack susceptibility of peritectic steels based on roughness. Ph.D.Thesis, Chongqing University, China, 2020(in Chinese). 郭军力. 基于粗糙度的包晶钢初始凝固收缩表征及裂纹敏感性研究. 博士学位论文, 重庆大学, 2020. 17 Guo J L, Wen G H, Fu J J, et al. Acta Metallurgica Sinica, 2019, 55(10), 1311(in Chinese). 郭军力, 文光华, 符姣姣, 等. 金属学报, 2019, 55(10), 1311. 18 Pu D, Wen G, Fu D, et al. Metals, 2018, 8(12), 892. 19 Li S S, Zhang L F, Yang X G, et al. Steelmaking, 2016, 32(3), 67(in Chinese). 李树森, 张立峰, 杨小刚, 等. 炼钢, 2016, 32(3), 67. 20 Zhang C W, Qu T P, Wang D Y, et al. Journal of Iron and Steel Research, 2019, 31(7), 660(in Chinese). 张采薇, 屈天鹏, 王德永, 等. 钢铁研究学报, 2019, 31(7), 660. 21 Shang D L, Li D G, Lv C F, et al. Chinese Journal of Engineering, 2010, 32(11), 1418 (in Chinese). 尚德礼, 李德刚, 吕春风, 等. 工程科学学报, 2010, 32(11), 1418. 22 Zheng C C, Wang X M, Li S R, et al. Science China Technological Sciences, 2012, 55(6), 1556. 23 Qu T P, Wang D Y, Wang H H, et al. Journal of Central South University, 2020, 27(12), 3637. 24 Hu Z G, Ma C L, Liu L, et al. Journal of Iron and Steel Research, 2006, 18(7), 10(in Chinese). 胡志刚, 马春林, 刘浏, 等. 钢铁研究学报, 2006, 18(7), 10. 25 Phelan D, Reid M, Dippenaar R. Materials Science and Engineering:A, 2008, 477(1-2), 226. 26 Xu J, He S, Jiang X, et al. ISIJ International, 2013, 53(10), 1812. 27 Mizukami H, Yamanaka A. ISIJ International, 2010, 50(3), 435. 28 Won Y M, Kim K H, Yeo T J, et al. ISIJ International, 1998, 38(10), 1093. |
|
|
|