POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Click Chemistry Modification and Applications of Nanocellulose |
LONG Juan1, LI Yuzhan2, LI Zhiqiang1,*, ZHONG Tuhua1,*
|
1 International Centre for Bamboo and Rattan, Beijing 100102, China 2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Nanocellulose is a type of cellulose with a diameter smaller than 100 nm, which is extracted from plant cell walls and can be rod-, whisker- and fiber-shaped. Nanocellulose possesses impressive features, including low density, renewability, biodegradability, biocompatibility, high modulus and low thermal expansion coefficient, and so on . The chemical properties of nanocellulose are monotonous due to the abundance of active hydroxyl groups on its surface, which makes it strong hydrophilicity and therefore limits its applications. The abundant hydroxyl groups on the cellulose surface provide a wide range of possibilities for chemical modifications and functionalization. Further chemical modification and functionalization can help expand the scope of their applications. Click chemistry possesses remarkable advantages such as high selectivity, modula-rization, high yield, rapid reaction, and so on. The click reaction is simple and is not sensitive to water or oxygen. In recent years, click chemistry has been increasingly applied for the chemical modification and functionalization of nanocellulose. In this review, the research progress on the applications of two main types of click reactions, i. e. azide-alkyne and thiol-ene, in the modification and functionalization of nanocellulose is mainly introduced, and the applications of click-modified nanocellulose used in composites, hydrogels, aerogels are also briefly summarized. Finally, difficulties and challenges facing the preparation, modification, and applications of nanocellulose based on the ‘click chemistry' strategy are summarized.
|
Published: 10 September 2024
Online: 2024-09-30
|
|
Fund:Basic Research Funds of International Centre for Bamboo and Rattan (1632022025,1632023017). |
|
|
1 Espino-Pérez E, Domenek S, Belgacem N, et al. Biomacromolecules, 2014, 15(12), 4551. 2 Song J, Tang A, Liu T, et al. Nanoscale, 2013, 5(6), 2482. 3 Mendoza D J, Browne C, Raghuwanshi V S, et al. Carbohydrate Polymers, 2019, 226, 115292. 4 Isogai A. Journal of Fiber Science and Technology, 2020, 76(10), 310. 5 Brinchi L, Cotana F, Fortunati E, et al. Carbohydrate Polymers, 2013, 94(1), 154. 6 Moon R J, Martini A, Nairn J, et al. Chemical Society Reviews, 2011, 40(7), 3941. 7 Ng H M, Sin L T, Tee T T, et al. Composites Part B-Engineering, 2015, 75, 176. 8 Beck S, Bouchard J, Berry R. Biomacromolecules, 2012, 13(5), 1486. 9 Wu H, Nagarajan S, Shu J, et al. Carbohydrate Polymers, 2018, 197, 204. 10 Beaumont M, Otoni C G, Mattos B D, et al. Green Chemistry, 2021, 23(19), 6966. 11 Beaumont M, Tardy B L, Reyes G, et al. Journal of the American Chemical Society, 2021, 143(41), 17040. 12 Beaumont M, Winklehner S, Veigel S, et al. Green Chemistry, 2020, 22(17), 5605. 13 Moreau C, Falourd X, Talantikite M, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(40), 13415. 14 Chen G X. Preparation and properties of carboxymethyl cellulose nanofibers. Master's Thesis, South China University of Technology, China, 2021 (in Chinese). 陈贵娴. 羧甲基化纤维素纳米纤维的制备及特性研究. 硕士学位论文, 华南理工大学, 2021. 15 Wang A. Modification of cellulose nanofibril and its application in reinforcement of plugging hydrogel. Master's Thesis, Tianjin University of Science and Technology, China, 2021 (in Chinese). 王安. 纤维素纳米纤丝的改性及其增强堵漏水凝胶的应用. 硕士学位论文, 天津科技大学, 2021. 16 Bian S S, Hu X M, He Z L, et al. Safety in Coal Mines, 2022, 53(5), 32 (in Chinese). 边素素, 胡相明, 贺正龙, 等. 煤矿安全, 2022, 53(5), 32. 17 Chuensangjun C, Kanomata K, Kitaoka T, et al. Journal of Polymers and the Environment, 2019, 27(4), 847. 18 Wu W B, Xu C Y, Zhuang Z L, et al. Acta Polymerica Sinica, 2015(3), 338 (in Chinese). 吴伟兵, 徐朝阳, 庄志良, 等. 高分子学报, 2015(3), 338. 19 Kolb H C, Finn M G, Sharpless K B. Angewandte Chemie International Edition, 2001, 40(11), 2004. 20 Geng Z, Shin J J, Xi Y, et al. Journal of Polymer Science, 2021, 59(11), 963. 21 Deng Y, Shavandi A, Okoro O V, et al. Carbohydrate Polymers, 2021, 270, 118360. 22 Fan J, Fan X, Guo Y, et al. Carbohydrate Polymers, 2022, 297, 120031. 23 Eyley S, Shariki S, Dale S E C, et al. Langmuir, 2012, 28(16), 6514. 24 Mendoza D J, Browne C, Raghuwanshi V S, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(18), 6427. 25 Mendoza D J, Maliha M, Raghuwanshi V S, et al. Materials Today Bio, 2021, 12, 100126. 26 Tang J, Li Y, Song Y, et al. Carbohydrate Polymers, 2020, 244, 116512. 27 Roberts M G, Yu Q, Keunen R, et al. Biomacromolecules, 2020, 21(6), 2014. 28 Joram M D, Mouterde L M M, Browne C, et al. Chem Sus Chem, 2020, 13(24), 6552. 29 Chen Z, Li Z, Lan P, et al. Carbohydrate Polymers, 2022, 275, 118708. 30 Chen Z Y. Preparation and functional application of tunicate cellulose nanocrystalline-based aerogels. Master's Thesis, Wuhan University of Technology, China, 2021 (in Chinese). 陈子阳. 海鞘纤维素纳米晶基气凝胶的制备及功能化应用. 硕士学位论文, 武汉理工大学, 2021. 31 Alimohammadzadeh R, Rafi A A, Goclik L, et al. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100205. 32 Zhao X, Chen Z, Lin N, et al. International Journal of Biological Macromolecules, 2021, 180, 143. 33 Tang H. Study on chemically-modified cellulose nanocrystals reinforced rubber-based nanocomposites and enhancing mechanism. Master's Thesis, Wuhan University of Technology, China, 2020 (in Chinese). 陶晗. 化学修饰纤维素纳米晶改性橡胶复合材料及其增强机理的研究. 硕士学位论文, 武汉理工大学, 2020. 34 Zhou L, Tang L S, Tao X F, et al. Chemical Engineering Journal, 2020, 396, 125206. 35 Rostovtsev V V, Green L G, Fokin V V, et al. Angewandte Chemie International Edition, 2002, 41(14), 2596. 36 Tornøe C W, Christensen C, Meldal M. The Journal of Organic Chemistry, 2002, 67(9), 3057. 37 Guo F. Surface modification of nanocellulose via surface-initiated ATRP. Master's Thesis, Wuhan Textile University, China, 2016 (in Chinese). 郭飞. 纤维素纳米晶的ATRP法表面改性. 硕士学位论文, 武汉纺织大学, 2016. 38 Eyley S, Thielemans W. Chemical Communications, 2011, 47(14), 4177. 39 Mincheva R, Jasmani L, Josse T, et al. Biomacromolecules, 2016, 17(9), 3048. 40 Pahimanolis N, Hippi U, Johansson L S, et al. Cellulose, 2011, 18(5), 1201. 41 Herreros-López A, Hadad C, Yate L, et al. European Journal of Organic Chemistry, 2016, 2016(19), 3186. 42 Wang H, He J, Zhang M, et al. Polymer Chemistry, 2015, 6(23), 4206. 43 Wang H R. Synthesis and characterization of acid sensitive copolymer or polymeric prodrug for DOX delivery. Ph. D. Thesis, Soochow University, China, 2015 (in Chinese). 王海蓉. 刺激响应性高分子药物控释载体的合成与应用. 博士学位论文, 苏州大学, 2015. 44 Filpponen I, Sadeghifar H, Argyropoulos D S. Nanomaterials and Nanotechnology, 2011, 1, 7. 45 Benkaddour A, Jradi K, Robert S, et al. Nanomaterials, 2013, 3(1), 141. 46 Zhou L, He H, Li M C, et al. Carbohydrate Polymers, 2018, 189, 33. 47 Filpponen I, Argyropoulos D S. Biomacromolecules, 2010, 11(4), 1060. 48 Sadeghifar H, Filpponen I, Clarke S P, et al. Journal of Materials Science, 2011, 46(22), 7344. 49 Bai L, Jiang X, Liu B, et al. RSC Advances, 2018, 8(50), 28660. 50 Aïssa K, Karaaslan M A, Renneckar S, et al. Biomacromolecules, 2019, 20(8), 3087. 51 Zhang X Q, Dong L L, Zhu J L, et al. Henan Science, 2016, 34(10), 1643 (in Chinese). 张修强, 董莉莉, 朱金陵, 等. 河南科学, 2016, 34(10), 1643. 52 Moses J E, Moorhouse A D. Chemical Society Reviews, 2007, 36(8), 1249. 53 Feese E, Sadeghifar H, Gracz H S, et al. Biomacromolecules, 2011, 12(10), 3528. 54 Chetia M, Ali A A, Bordoloi A, et al. Journal of Chemical Sciences, 2017, 129(8), 1211. 55 Dondoni A. Angewandte Chemie International Edition, 2008, 47(47), 8995. 56 Hoyle C E, Bowman C N. Angewandte Chemie International Edition, 2010, 49(9), 1540. 57 Griesbaum K. Angewandte Chemie, 1970, 82(7), 276. 58 Nielsen L J, Eyley S, Thielemans W, et al. Chemical Communications, 2010, 46(47), 8929. 59 Chen H, Li R, Xie J, et al. Materials Letters, 2019, 245, 18. 60 Parambath K B, Claudino M, Johansson M, et al. ACS Applied Materials & Interfaces, 2015, 7(30), 16303. 61 Li L, Tao H, Wu B, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(11), 14888. 62 Córdova A, Afewerki S, Alimohammadzadeh R, et al. Pure and Applied Chemistry, 2019, 91(5), 865. 63 Afewerki S, Alimohammadzadeh R, Osong S H, et al. Global Challenges, 2017, 1(7), 1700045. 64 Rosilo H, Kontturi E, Seitsonen J, et al. Biomacromolecules, 2013, 14(5), 1547. 65 Zhang J, Xu X D, Wu D Q, et al. Carbohydrate Polymers, 2009, 77(3), 583. 66 Wang L, Hu J, Liu Y, et al. ACS Applied Materials & Interfaces, 2020, 12(34), 38796. 67 Aloui H, Khwaldia K, Hamdi M, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(3), 794. 68 Chen J, Lin N, Huang J, et al. Polymer Chemistry, 2015, 6(24), 4385. 69 Chen Y. Alkynylated modification of cellulose nanocrystals and study on its modified materials. Master's Thesis, Wuhan University of Technology, China, 2015 (in Chinese). 陈筠. 纤维素纳米晶的炔基化修饰及其改性材料的研究. 硕士学位论文, 武汉理工大学, 2015. 70 Kailasa S K, Joshi D J, Kateshiya M R, et al. Materials Today Chemistry, 2022, 23, 100746. 71 Ahankari S, Paliwal P, Subhedar A, et al. ACS Nano, 2021, 15(3), 3849. 72 Rahbar S K, Heidari H, Rashidi A. Journal of Polymers and the Environment, 2019, 27(7), 1418. 73 Rahbar S K, Heidari H, Rashidi A. Industrial Crops and Products, 2016, 93, 203. 74 Zhou L, Zhai Y M, Yang M B, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(18), 15617. 75 García-Astrain C, González K, Gurrea T, et al. Carbohydrate Polymers, 2016, 149, 94. 76 Shao C, Wang M, Chang H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(7), 6167. |
|
|
|