INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Crystal Growth, Physical Properties and Application of Cubic Boron Arsenide |
WANG Yuanyuan1, ZHANG Lu1, CHENG Xixi1, QIAN Qi2, XU Huan3, XU Hua4, YANG Xuezhou5, YANG Bobo1,4,*, ZOU Jun2,3,5,*
|
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China 2 Silanex Technology (Taizhou) Co., Ltd., Taizhou 318000, Zhejiang, China 3 Zhejiang Anbei New Material Co., Ltd., Huzhou 313000, Zhejiang, China 4 Guang Dong KG Lighting Technology Co., Ltd., Zhongshan 528400, Guangdong, China 5 Ningbo Longer Lighting Co., Ltd., Ningbo 315301, Zhejiang, China |
|
|
Abstract Cubic boron arsenide(c-BAs) is a new type of group Ⅲ-Ⅴ compound semiconductor material with indirect band gap and zinc blend structure. First-principles calculations predict that c-BAs have extremely high thermal conductivity, which has stimulated a great deal of research on crystal synthesis and properties. In particular, recent breakthroughs in crystal growth, such as the preparation of millimeter-size high quality c-BAs single crystals by chemical vapor transport (CVT) method, with thermal conductivity up to 1 300 W·m-1·K-1 at room temperature, have attracted great attention and further encouraged the theoretical and experimental research. In this review, we summarize the recent research progress in the theoretical calculation, crystal growth, physical properties and material application of c-BAs, describe the challenges in the preparation of the crystal, and prospect its development prospects.
|
Published: 10 September 2024
Online: 2024-09-30
|
|
Fund:National Key R & D Program of China (2021YFB3501700),Shanghai Science and Technology Committee (STCSM) Science and Technology Innovation Program (22N21900400, 23N21900100 ),National Natural Science Foundation of China (12104311),Science and Technology Talent Development Fund for Young and Middle-aged Teachers of Shanghai Institute of Technology (ZQ2022-3),Shanghai Chenguang Program (22CGA74). |
|
|
1 Waldrop M M. Nature News, 2016, 530(7589), 144. 2 Garimella S V, Fleischer A S, Murthy J Y, et al. IEEE Transactions on Components and Packaging Technologies. 2008, 31(4), 801. 3 Lindsay L, Broido D A, Reinecke T L. Physical Review Letters, 2013, 111(2), 025901. 4 Lv B, Lan Y, Wang X, et al. Applied Physics Letters, 2015, 106(7), 074105. 5 Xing J, Chen X, Zhou Y, et al. Applied Physics Letters, 2018, 112(26), 261901. 6 Zheng Q, Polanco C A, Du M H, et al. Physical Review Letters, 2018, 121(10), 105901. 7 Surh M P, Louie S G, Cohen M L. Physical Review B, 1991, 43(11), 9126. 8 Wentzcovitch R M, Cohen M L, Lam P K. Physical Review B, 1987, 36(11), 6058. 9 Meradji H, Drablia S, Ghemid S, et al. Physical Status Solidi (b), 2004, 241(13), 2881. 10 Ustundag M, Aslan M, Yalcin B G. Computational Materials Science, 2014, 81, 471. 11 Dramicanin M. Luminescence thermometry: methods, materials, and applications, Woodhead Publishing, UK, 2018, pp. 13. 12 Lax M, Hu P, Narayanamurti V. Physical Review B, 1981, 23(6), 3095. 13 Kang J S, Li M, Wu H, et al. Science, 2018, 361(6402), 575. 14 Tian F, Song B, Chen X, et al. Science, 2018, 361(6402), 582. 15 Ma H, Li C, Tang S, et al. Physical Review B, 2016, 94(22), 220303. 16 Feng T, Ruan X. Physical Review B, 2018, 97(4), 045202. 17 Blakemore J S. Journal of Applied Physics, 1982, 53(10), 123. 18 Slack G A. Journal of Physics and Chemistry of Solids, 1973, 34(2), 321. 19 Gamage G A, Sun H, Ziyaee H, et al. Applied Physics Letters, 2019, 115(9). 20. Chu T L, Hyslop A E. Journal of Applied Physics, 1972, 43(2), 276. 20 Li S, Zheng Q, Lv Y, et al. Science, 2018, 361(6402), 579. 21 Liu Z, Deng F, Zhou Y, et al. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4), 662. 22 Tian F, Ren Z. Angewandte Chemie, 2019, 131(18), 5882. 23 Perri J A, La Placa S, Post B. Acta Crystallographica, 1958, 11(4), 310. 24 Tian F, Song B, Lv B, et al. Applied Physics Letters, 2018, 112(3), 031903. 25 Xing J, Glaser E R, Song B, et al. Applied Physics Letters, 2018, 112(24), 241903. 26 Lyons J L, Varley J B, Glaser E R, et al. Applied Physics Letters, 2018, 113(25), 251902. 27 Liu T H, Song B, Meroueh L, et al. Physical Review B, 2018, 98(8), 081203. 28 Schäfer H. Chemische transportreaktionen: der transport anorganischer stoffe über die gasphase und seine anwendungen. Verlag Chemie, GER, 1962, pp. 885. 29 Binnewies M, Glaum R, Schmidt M, et al. Zeitschrift für anorganische und allgemeine Chemie, 2013, 639(2), 219. 30 Gamage G A, Chen K, Chen G, et al. Materials Today Physics, 2019, 11, 100160. 31 Tian F, Luo K, Xie C, et al. Applied Physics Letters, 2019, 114(13), 131903. 32 Gao F, He J, Wu E, et al. Physical Review Letters, 2003, 91(1), 015502. 33 He J, Wu E, Wang H, et al. Physical Review Letters, 2005, 94(1), 015504. 34 García A, Cohen M L. Physical Review B, 1993, 47(8), 4215. 35 Le Page Y, Saxe P. Physical Review B, 2002, 65(10), 104104. 36 Wang J, Yip S, Phillpot S R, et al. Physical Review Letters, 1993, 71(25), 4182. 37 Kang J S, Li M, Wu H, et al. Applied Physics Letters, 2019, 115(12), 122103. 38 Hill R. Proceedings of the Physical Society, Section A, 1952, 65(5), 349. 39 Daoud S, Bioud N, Bouarissa N. Materials Science Semiconductor Processing, 2015, 31, 124. 40 Li P, Hao X, Lu S, et al. Science China Materials, 2023, 66(4), 1675. 41 Yue S, Tian F, Sui X, et al. Science, 2022, 377(6604), 433. 42 Bushick K, Chae S, Deng Z, et al. Npj Computational Materials, 2020, 6(1), 3. 43 Bushick K, Mengle K, Sanders N, et al. Applied Physics Letters, 2019, 114(2), 022101. 44 Song B, Chen K, Bushick K, et al. Applied Physics Letters, 2020, 116(14), 141903. 45 Sun H, Chen K, Gamage G A, et al. Materials Today Physics, 2019, 11, 100169. 46 Cahill D G. Review of Scientific Instruments, 2004, 75(12), 5119. 47 Yue S, Gamage G A, Mohebinia M, et al. Materials Today Physics, 2020, 13, 100194. 48 Fava M, Protik N H, Li C, et al. Npj Computational Materials, 2021, 7(1), 54. 49 Chen X, Li C, Xu Y, et al. Chemistry of Materials, 2021, 33(17), 6974. 50 Protik N H, Carrete J, Katcho N A, et al. Physical Review B, 2016, 94(4), 045207. 51 Zhou Y, Hsieh W P, Chen C C, et al. Applied Physics Letters, 2022, 121(12). 52 Whiteley C E, Zhang Y, Gong Y, et al. Journal of Crystal Growth, 2011, 318(1), 553. 53 Wei L, Kuo P K, Thomas R L, et al. Physical Review Letters, 1993, 70(24), 3764. 54 Lindsay L, Broido D A, Reinecke T L. Physical Review B, 2013, 88(14), 144306. 55 Kang J S, Li M, Wu H, et al. Nature Electronics, 2021, 4(6), 416. 56 Cui Y, Qin Z, Wu H, et al. Nature Communications, 2021, 12(1), 1284. 57 Wang S, Swingle S F, Ye H, et al. Journal of the American Chemical Society, 2012, 134(27), 11056. 58 Cao M, Ni L, Wang Z, et al. Applied Surface Science, 2021, 551, 149364. |
|
|
|