INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Biomass-based Hard Carbon Anode Materials for Sodium-Ion Batteries |
TANG Jingjing1,*, LI Xiaoying1, CHEN Yanxi1, ZHOU Liuxi1, WEN Kang2, ZHOU Qijie2, CHEN Song2, YANG Juan1, ZHOU Xiangyang1,*
|
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China 2 Chenyu-Fuji New Energy Technology Company Limited, Changsha 410083, China |
|
|
Abstract Sodium-ion batteries with cost advantages are considered a useful complement to lithium-ion batteries and the development of low-cost, high-performance electrode materials is the key to the commercialization of sodium-ion batteries. As for anode materials, with the advantages of easy availability of carbon source, easy preparation, and high structural adjustability, hard carbon has great potential of being commercialized. Among the many precursors of hard carbon materials, biomass is favored due to its abundant source and low cost. However, the pore structure and surface characteristics of biomass based hard carbon anode materials have a significant impact on their sodium insertion and extraction performance. In this paper, we summarize the research progress in recent years from the performance influencing factors of biomass-based hard carbon anode, and further discuss the challenges in the commercialization process of biomass-based hard carbon anode for sodium-ion batteries and its future research directions, hoping to provide useful guidelines for future research and commercialization.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:Hunan Provincial Outstanding Youth Project (2023JJ10076). |
|
|
1 Xie M, Wu F, Huang Y X. Advanced technology and application of sodiu-mion batteries, Electronics Industry Press, China, 2020, pp.1 (in Chinese). 谢嫚, 吴锋, 黄永鑫. 钠离子电池先进技术及应用, 电子工业出版社, 2020, pp.1. 2 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928. 3 Zhu Z X, Jiang T L, Mohsin Ali, et al. Chemical Reviews, 2022, 122(22), 16610. 4 Jacobson M Z. Energy & Environmental Science, 2009, 2(2), 148. 5 Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Chemical Reviews, 2011, 111(5), 3577. 6 Nayak P K, Yang L, Brehm W, et al. Angewandte Chemie International Edition, 2018, 57(1), 102. 7 Yabuuchi N, Kubota K, Dahbi M, et al. Chemical Reviews, 2014, 114(23), 11636. 8 Zhu Y Y, Wang Y H, Wang Y T, et al. Carbon Energy, 2022, 4(6), 1182. 9 Hou H, Qiu X, Wei W, et al. Advanced Energy Materials, 2017, 7(24), 1602898. 10 Hirsh H S, Li Y, Tan D, et al. Advanced Energy Materials, 2020, 10(32), 2001274. 11 Delmas C. Advanced Energy Materials, 2018, 8(17), 1703137. 12 Pu X, Wang H, Zhao D, et al. Small, 2019, 15(32), 1805427. 13 Ge P, Fouletier M. Solid State Ionics, 1988, 28-30(part 2), 1172. 14 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2001, 148(8), A803. 15 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4), 1271. 16 Perveen T, Siddiq M, Shahzad N, et al. Renewable and Sustainable Energy Reviews, 2020, 119, 109549. 17 Xia G H, Wang D, Li X B, et al. Materials Reports, 2021, 35(13), 13041(in Chinese). 夏广辉, 王丁, 李雪豹, 等. 材料导报, 2021, 35(13), 13041. 18 Xie F, Xu Z, Guo Z Y, et al. Progress in Energy, 2020, 2(4), 042002. 19 Zhang G, Liu X, Wang L, et al. Journal of Materials Chemistry A, 2022, 10, 9277. 20 Sun N, Guan Z R X, Liu Y W, et al. Advanced Energy Materials, 2019, 9(32), 1901351. 21 Dou X, Hasa I, Saurel D, et al. Materials Today, 2019, 3, 87. 22 Deng W T, Cao Y J, Yuan G M, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47728. 23 Zhang T, Mao J, Liu X L, et al. RSC Advances, 2017, 7(66), 41504. 24 Li Y Q, Lu Y X, Meng Q S, et al. Advanced Energy Materials, 2019, 9, 1902852. 25 Li Y M, Hu Y S, Titirici M M, et al. Advanced Energy Materials, 2016, 6(18), 1600659. 26 Wang J, Yan L, Ren Q J, et al. Electrochimica Acta, 2018, 291, 188. 27 Wu F, Zhang M H, Bai Y, et al. ACS Applied Materials & Interfaces, 2019, 11(13), 12554. 28 Chen C, Huang Y, Zhu Y D, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(3), 1497. 29 Li Q, Zhang Y, Feng S, et al. International Journal of Energy Research, 2020, 45(5), 7082. 30 Saurel D, Orayech B, Xiao B, et al. Advanced Energy Materials, 2018, 8(17), 1703268. 31 Franklin R E. Proceedings of the Royal Society A, 1951, 209(1097), 196. 32 Chen X Y, Liu C Y, Fang Y J, et al. Carbon Energy, 2022, 4(6), 1133. 33 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4), 1271. 34 Komaba S, Murata W, Ishikawa T, et al. Advanced Functional Materials, 2011, 21(20), 3859. 35 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783. 36 Ding J, Wang H, Li Z, et al. ACS Nano, 2013, 7(12), 11004. 37 Zhang B, Ghimbeu C M, Laberty C, et al. Advanced Energy Materials, 2016, 6(1), 1501588. 38 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888. 39 Jin Y, Sun S, Ou M, et al. ACS Appllied Energy Materials, 2018, 1(5), 2295. 40 Chen X Y, Tian J Y, Li P, et al. Advanced Energy Materials, 2022, 12(24), 2200886. 41 Zhao J H, He X X, Lai W H, et al. Advanced Energy Materials, 2023, 13(18), 2300444. 42 Wang J, Yan L, Ren Q J, et al. Electrochimica Acta, 2018, 291, 188. 43 Rybarczyk M K, Li Y M, Qiao M, et al. Journal of Energy Chemistry, 2019, 29, 17. 44 Rath P C, Patra J, Huang H T, et al. ChemSusChem, 2019, 12(10), 2302. 45 Zhou S Y, Tang Z, Pan Z Y, et al. SusMat, 2022, 2(3), 357. 46 Wang J C, Zhao J H, He X X, et al. Sustainable Materials and Technologies, 2022, 33, e00446. 47 Gao Y P, Piao S Y, Jiang C H, et al. Diamond & Related Materials, 2022, 129, 109329. 48 Guo S, Chen Y M, Tong L P, et al. Electrochimica Acta, 2022, 410, 140017. 49 Hou Z D, Lei D, Jiang M W, et al. ACS Applied Materials & Interfaces, 2023, 15(1), 1367. 50 Xu T Y, Qiu X, Zhang X, et al. Chemical Engineering Journal, 2023, 452(4), 139514. 51 Gao Z, Zhang Y, Song N, et al. Materials Research Letters, 2016, 5(2), 69. 52 Joanna G, Cathie V G, Camelia M G. C-Journal of Carbon Research, 2016, 2(4), 24. 53 Thompson M, Xia Q B, Hu Z, et al. Materials Advances, 2021, 2, 5881. 54 Titirici M M, Thomas A, Yu S H, et al. Chemistry of Materials, 2007, 19(17), 4205. 55 Senthil C, Park J W, Shaji N, et al. Journal of Energy Chemistry, 2022, 64, 286. 56 Jin Y H, Shi Z Y, Han T, et al. Processes, 2023, 11(3), 764. 57 Rios C M S, Simonin L, Ghimbeu C M, et al. Fuel Processing Technology, 2022, 231, 107223. 58 Xiao L F, Lu H Y, Fang Y J, et al. Advanced Energy Materials, 2018, 8(20), 1703238. 59 Wang K, Jin Y, Sun S X, et al. ACS Omega, 2017, 2(4), 1687. 60 Beda A, Meins J M, Taberna P L, et al. Sustainable Materials and Technologies, 2020, 26, e00227. 61 Yang H P, Rong Y, Chen H P, et al. Fuel, 2007, 86(12-13), 1781. 62 Sharma H B, Sarmah A K, Dubey B. Renewable and Sustainable Energy Reviews, 2020, 123, 109761. 63 Titirici M M, White R J, Falco C, et al. Energy & Environmental Science, 2012, 5(5), 6796. 64 Lotfabad E M, Ding J, Cui K, et al. ACS Nano, 2014, 8(7), 7115. 65 Sun N, Liu H, Xu B. Journal of Materials Chemistry A, 2015, 3(41), 20560. 66 Xu Z Q, Chen J C, Wu M Q, et al. Electronic Materials Letters, 2019, 15, 428. 67 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783. 68 Chen D Q, Zhang W, Luo K Y, et al. Energy & Environmental Science, 2021, 14(4), 2244. |
|
|
|