INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Advances in the Catalytic Oxidation of Toluene by MnO2-based Catalysts |
SONG Jie1, DING Honglei1,2,3,*, PAN Weiguo1,2,3,*, ZHANG Kai1, MA Junchi1, ZHANG Ziyi1
|
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China 2 Shanghai Power Environmental Protection Engineering Technology Research Center, Shanghai 201600, China 3 Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai 200090, China |
|
|
Abstract Owing to industrial development and increasing energy consumption in China, toluene pollution has become a serious environmental concern. Among the existing toluene treatment methods, catalytic oxidation is undoubtedly the most economical and effective technical approach. The performance of the catalyst, which is the core of the catalytic reaction, is particularly essential. Although noble metal catalysts possess excellent catalytic activity, their high cost and the decrease in activity due to sintering and poisoning hinder their widespread application in industry. In recent years, manganese dioxide (MnO2) has attracted much attention as a transition metal oxide catalyst for the catalytic oxidation of toluene owing to its high catalytic activity, thermal stability, low cost, and easy synthesis, as well as the availability of various crystal forms. However, the catalytic activity of single MnO2 is unsatisfactory, prompting the present study on its modification and optimization. We analyzed the effects of the structural characteristics of MnO2, such as the crystal structure, surface properties, and specific crystalline surfaces, on the catalytic efficiency of toluene. Further, we aimed to improve the performance of MnO2 for the catalytic oxidation of toluene through modification approaches like doping and composite loading and to elucidate the catalytic oxidation mechanism of toluene on MnO2. The direction of future research on the preparation of novel MnO2 catalysts for toluene catalysis is outlined herein.
|
Published: 10 July 2024
Online: 2024-08-01
|
|
Fund:National Key Research and Development Program(2018YFB0604204)and Shanghai Science and Technology Tackling Project(21DZ1207203). |
|
|
1 Li X, Zhang L, Yang Z, et al. Separation and Purification Technology, 2020, 235, 116213. 2 Almaie S, Vatanpour V, Rasoulifard M H, et al. Chemosphere, 2022, 306, 135655. 3 Sun J, Wu F, Hu B, et al. Atmospheric Environment, 2016, 141, 560. 4 Zhang J, Xiao J, Chen X, et al. Journal of Environmental Sciences, 2018, 69(07), 159. 5 Liu R, Wu H, Shi J H, et al. Catalysis Science & Technology, 2022, 12(23), 6945. 6 Guo Y L, Wen M C, Li G Y, et al. Applied Catalysis B-Environmental, 2021, 281, 119447. 7 Wang N, Shi M L, Wu S M, et al. Atmosphere, 2022, 13(8), 1241. 8 Liu S, Chen J, Peng Y, et al. Chemical Engineering Journal, 2018, 334, 191. 9 Ma X, Wang W, Sun C, et al. Environmental Pollution, 2021, 285, 117675. 10 Cichowska-Kopczyńska I, Joskowska M, Debski B, et al. Journal of Membrane Science, 2018, 566, 367. 11 Mathur A K, Majumder C B and Chatterjee S, Journal of Hazardous Materials, 2007, 148(2), 64. 12 Muoz-Batista M J, Bertolini G R, Cabello C I, et al. Applied Catalysis B: Environmental, 2018, 238, 381. 13 Rokicińska A, Drozdek M, Dudek B, et al. Applied Catalysis B: Environmental, 2017, 212, 59. 14 Chen X, Wang Y, Li J, et al. Journal of Environmental Sciences, 2022, 116, 114. 15 Okumura K and Iiyoshi H, Microporous and Mesoporous Materials, 2021, 325, 111336. 16 Liu Y, Dai H, Deng J, et al. Journal of Catalysis, 2013, 305, 146. 17 Reddy K H P, Kim B-S, Lam S S, et al. Environmental Research, 2021, 195, 110876. 18 Li J R, Zhang W P, Li C, et al. Journal of Colloid and Interface Science, 2021, 591, 396. 19 Wang P, Wang J, An X, et al. Applied Catalysis B: Environmental, 2021, 282, 119560. 20 Su Z, Si W, Liu H, et al. Environmental Science & Technology, 2021, 55(18), 12630. 21 Wang Y, Wu J, Wang G, et al. Applied Catalysis B: Environmental, 2021, 285, 119873. 22 Zhang K, Ding H, Pan W, et al. Environmental Science & Technology, 2022, 56(13), 9220. 23 Sophiana I, Topandi A, Iskandar F, et al. Materials Today Chemistry, 2020, 17, 100305. 24 Du Y, Meng Q, Wang J, et al. Microporous and mesoporous materials, 2012, 162, 199. 25 Lu Y, Deng H, Pan T, et al. Environmental Science & Technology, 2023, 57(7), 2918. 26 Liu W, Xiang W, Chen X, et al. Fuel, 2022, 312, 122975. 27 Wang H J, Liu F T, Yang W T, et al. Aerosol and Air Quality Research, 2022, 22(2), 210365. 28 Fang R M, Huang J, Huang X Y, et al. Chemosphere, 2022, 289, 133081. 29 Zeng J, Xie H, Zhang H, et al. Chemosphere, 2022, 291, 132890. 30 Yang W, Su Z A, Xu Z, et al. Applied Catalysis B: Environmental, 2020, 260, 118150. 31 Li R, Zhang L, Zhu S, et al. Applied Catalysis A: General, 2020, 602, 117715. 32 Dinh M T N, Nguyen C C, Vu T L T, et al. Applied Catalysis A: General, 2020, 595, 117473. 33 Wang F, Dai H, Deng J, et al. Environmental Science & Technology, 2012, 46(7), 4034. 34 Zeng X, Cheng G, Liu Q, et al. Industrial & Engineering Chemistry Research, 2019, 58(31), 13926. 35 Li Q, Odoom-Wubah T, Zhou Y, et al. Industrial & Engineering Chemistry Research, 2019, 58(8), 2882. 36 Huang J, Fang R, Sun Y, et al. Chemosphere, 2021, 263, 128103. 37 Chen Z, Pan D, Zhao B, et al. ACS Nano, 2010, 4(2), 1202. 38 Julien C M, Massot M, Poinsignon C. Spectrochim Acta A Mol Biomol Spectrosc, 2004, 60(3), 689. 39 Fan J, Ren Q, Mo S, et al. ChemCatChem, 2020, 12(4), 1046. 40 Devaraj S, Munichandraiah N. The Journal of Physical Chemistry C, 2008, 112(11), 4406. 41 Chen K, Sun C, Xue D. Physical Chemistry Chemical Physics, 2015, 17(2), 732. 42 Sivakumar P, Raj C J, Park J, et al. Ceramics International, 2022, 48(7), 9459. 43 Khalid S, Cao C B. New Journal of Chemistry, 2017, 41(13), 5794. 44 Si W, Wang Y, Peng Y, et al. Chemical Communications, 2020, 51(81), 14977. 45 Huang N, Qu Z, Dong C, et al. Applied Catalysis A: General, 2018, 560, 195. 46 Wang S C, Liu G, Wang L Z. Chemical Reviews, 2019, 119(8), 5192. 47 Liu G, Yu J C, Lu G Q, et al. Chemical Communications, 2011, 47(48), 12889. 48 Chu K, Liu Y P, Li Y B, et al. Applied Catalysis B: Environmental, 2020, 264, 118525. 49 Zhang X, Yang Y, Zhu Q, et al. Journal of Colloid and Interface Science, 2021, 598, 324. 50 Zhai X, Jing F, Li L, et al. Fuel, 2021, 283, 118888. 51 Peng K, Hou Y, Zhang Y, et al. Fuel, 2022, 314, 123123. 52 Dong C, Qu Z, Jiang X, et al. Journal of Hazardous Materials, 2020, 391, 122181. 53 Zhu Q, Jiang Z, Ma M, et al. Catalysis Science & Technology, 2020, 10(7), 2100. 54 Dong Y, Zhao J, Zhang J Y, et al. Chemical Engineering Journal, 2020, 388, 124244. 55 Li L, Luo J, Liu Y, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21798. 56 Liu W, Xiang W, Guan N, et al. Separation and Purification Technology, 2022, 278, 119590. 57 Li J, Qu Z, Qin Y, et al. Applied Surface Science, 2016, 385, 234. 58 Sun H, Yu X, Yang X, et al. Catalysis Today, 2019, 332, 153 59 Ye Q, Zhao J, Huo F, et al. Microporous & Mesoporous Materials, 2013, 172, 20. 60 Mo S, Zhang Q, Zhang M, et al. Nanoscale Horizons, 2019, 4(6), 1425. 61 Xia Y, Xia L, Liu Y, et al. Journal of Environmental Sciences, 2018, 64, 276. 62 He J, Chen D, Li N, et al. Green Energy & Environment, 2022, 7(6), 1349. 63 Mo S, Li J, Liao R, et al. Chemical Engineering Journal, 2021, 418, 129399. 64 Dong N, Ye Q, Xiao Y, et al. Catalysis Science & Technology, 2022, 12(7), 2197. 65 Si W, Wang Y, Zhao S, et al. Environmental Science & Technology, 2016, 50(8), 4572. 66 Li L, Liu Y, Liu J, et al. Catalysts, 2022, 12(12), 1666. 67 Liu L, Li J, Zhang H, et al. Journal of Hazardous Materials, 2019, 362, 178. 68 Qi M, Li Z, Zhang Z, et al. Chinese Chemical Letters, 2023, 34(2), 107437. 69 Xue T, Li R, Zhang Z, et al. Journal of Environmental Sciences, 2020, 96, 194. 70 Hu P, Huang Z, Amghouz Z, et al. Angewandte Chemie, 2014, 126(13), 3486. 71 Zeng X, Li B, Liu R, et al. Chemical Engineering Journal, 2019, 384, 123362. 72 Wei C, Xu C, Li B, et al. Journal of Power Sources, 2013, 234(15), 1. 73 Ma M, Zhu Q, Jiang Z, et al. Journal of Colloid and Interface Science, 2021, 598, 238. 74 Li L, Wahab M A, Li H, et al. ACS Applied Nano Materials, 2021, 4(7), 6637. 75 Sager S, Kondarides D, Verykios X. Applied Catalysis B: Environmental, 2011, 103(3), 275. 76 Du J, Qu Z, Dong C, et al. Applied Surface Science, 2018, 433, 1025. 77 Zhang C, Guo Y, Guo Y, et al. Applied Catalysis B: Environmental, 2014, 148, 490. 78 Min X, Guo M, Li K, et al. Separation and Purification Technology, 2022, 295, 121316. 79 Luo Y, Lin D, Zheng Y, et al. Applied Surface Science, 2020, 504, 144481. 80 Aguilera D A, Perez A, Molina R, et al. Applied Catalysis B: Environmental, 2011, 104(1), 144. 81 Zhang Q, Liu X, Fan W, et al. Applied Catalysis B: Environmental, 2011, 102(1), 207. 82 Lu H, Kong X, Huang H, et al. Journal of Environmental Sciences, 2015, 32(006), 102. 83 Shan Y, Gao N, Chen Y, et al. Industrial & Engineering Chemistry Research, 2019, 58(36), 1452. 84 Qin Y, Wang Y, Li J, et al. Surfaces and Interfaces, 2020, 21, 100657. 85 Yang J, Li L, Yang X, et al. Catalysis Today, 2019, 327, 19. 86 Yang R, Han P, Fan Y, et al. Chemosphere, 2020, 247, 125864. 87 Doornkamp C, Ponec V. Journal of Molecular Catalysis A: Chemical, 2000, 162(1), 19. 88 Dong C, Wang H, Ren Y, et al. Surfaces and Interfaces, 2021, 22, 100897. |
|
|
|