INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Capillary Hysteresis Phenomenon in Porous Materials:a Review |
ZHU Zijian1,2, HU Pengbo1,2, FENG Chi1,2,*
|
1 School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China 2 Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China |
|
|
Abstract Capillary hysteresis is a phenomenon where the moisture content of porous materials in drying process is generally higher than that in wetting process at a certain water potential. This means that porous materials have multiple moisture contents at the same water potential. Neglecting capillary hysteresis in the engineering practices of civil construction, food science, and soil science can lead to inaccurate calculation and control ofthe moisture content, which can negatively impact heat and moisture transfer in building envelopes, nutrition and freshness of food, and the structural stability of soil. This paper aims to address this phenomenon by summarizing the causes, experimental research methods, and prediction models of capillary hysteresis. The goal is to provide a more comprehensive and profound understanding of the moisture storage mechanism of porous materials and offer references for the establishment of a more accurate mathematical and physical model describing the relationship between the moisture content of porous materials and water potential. It is crucial to consider capillary hysteresis when dealing with porous materials to ensure precise and effective moisture control.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:National Natural Science Foundation of China (52178065) and Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University (LNTCCMA-20230104). |
|
|
1 Adan O C G. On the fungal defacement of interior finishes. Ph. D. Thesis, Eindhoven University of Technology, Holland, 1994.
2 Hart B J. Allergy, 1998, 53(48 Suppl), 13.
3 Fang L, Clausen G, Fanger P O. Indoor Air, 1998, 8(2), 80.
4 Wolkoff P, Kjærgaard S K. Environment International, 2007, 33(6), 850.
5 Arianna B, Alberto S. Moisture and buildings:durability issues, health implications and strategies to mitigate the risks, Woodhead Publishing, UK, 2021. pp.34.
6 Viitanen H, Vinha J, Salminen K, et al. Journal of Building Physics, 2010, 33(3), 201.
7 Harrestrup M, Svendsen S. Building and Environment, 2015, 85, 123.
8 Ma N, Qi Y, Chen Q, et al. Plant Molecular Biology Reporter, 2022, 41(1), 104.
9 Isengard H D. Ensuring global food safety, Academic Press, USA, 2010, pp.109.
10 Datta A K. Journal of Food Engineering, 2007, 80(1), 80.
11 Datta A K. Journal of Food Engineering, 2007, 80(1), 96.
12 Tuli A, Hopmans J W, Rolston D E, et al. Soil Science Society of America Journal, 2005, 69(5), 1361.
13 Wang Q, Shao M, Horton R. Soil Science Society of America Journal, 2004, 68(3), 713.
14 Tyagi J V, Qazi N, Rai S P, et al. Journal of Forestry Research, 2013, 24, 317.
15 Kumaran M K. Heat, air and moisture transfer in insulated envelope parts:final report:volume 3:task 3:material properties, International Energy Agency, Canada, 1996, pp.3.
16 Feng C, Janssen H. Building Environment, 2019, 152, 39.
17 Zhang Z, Thiery M, Baroghel-Bouny V. Cement and Concrete Research, 2014, 57, 44.
18 Inoue S, Tanaka H, Hanzawa Y, et al. Studies in surface science and catalysis, Elsevier, 2000, pp.167.
19 Steeman H J, van Belleghem M, Janssens A, et al. Building and Environment, 2009, 44(10), 2176.
20 Scheffler G A. Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage. Ph. D. Thesis, Dresden University of Technology, German, 2008.
21 Tarantino A, Romero E, Cui Y J. Geotechnical and Geological Enginee-ring, 2008, 26(6), 613.
22 Albers B. Acta Mechanica, 2014, 225(8), 2163.
23 Sheta H. Simulation von mehrphasenvorgängen in porösen medien unter einbeziehung von hysterese-effekten. Ph. D. Thesis, University of Stuttgart, German, 1999.
24 Zhang X. Moisture storage characterization for heat and moisture transport in wood materials. Ph. D. Thesis, Tongji University, China, 2016.
25 Time B. Hygroscopic moisture transport in wood, Norwegian University of Science and Technology Trondheim, Norway, 1998, pp.30.
26 Janz M. Journal of Materials in Civil Engineering, 2001, 13(5), 364.
27 Feng C. Study on the test methods for the hygric properties of porous building materials. Ph. D. Thesis, South China University of Technology, China, 2014 (Chinese).
冯驰. 多孔建筑材料湿物理性质的测试方法研究. 博士学位论文, 华南理工大学, 2014.
28 Feng C, Janssen H, Meng Q, et al. In:Proceedings of the 10th Nordic Symposium on Building Physics. Sweden, 2014, pp.435.
29 Wilkes K, Atchley J, Childs P. In:Proceedings of the International Conference on Performance of Exterior Envelopes of Whole Buildings IX. Florida, 2004.
30 T/CECS 10203-2022. Test methods for hygric physical properties of buil-ding materials, 2022(in Chinese).
T/CECS 10203-2022. 建筑材料湿物理性质测试方法, 2022.
31 Al-Muhtaseb A H, McMinn W A M, Magee T R A. Food and Biopro-ducts Processing, 2002, 80(2), 118.
32 Feng C, Cui Y, Wang D. In:14th International Conference of Indoor Air Quality and Climate. Belgium, 2016.
33 ISO 12571:2021(en) Hygrothermal performance of building materials and products-Determination of hygroscopic sorption properties. 2021.
34 ASTM C1498-04a:Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials. 2016.
35 GB/T 20312-2006. Hygrothermal performance of building materials and products. Determination of hygroscopic sorption properties. 2006
GB/T 20312-2006. 建筑材料及制品的湿热性能. 吸湿性能的测定. 2006.
36 Lu Y, Abuel-Naga H, Bouazza A. Geotextiles and Geomembranes, 2017, 45(1), 23(in Chinese).
37 Abuel-Naga H, Bouazza A. Geosynthetics International, 2010, 17, 313.
38 Hilf J W. An investigation of pore-water pressure in compacted cohesive soils, University of Colorado at Boulder, 1956.
39 Mavroulidou M, Zhang X, Gunn M. In:11th International Conference on the Environmental Science and Technology. Greece, 2009, pp.35.
40 Southen J M, Kerry Rowe R. Geotextiles and Geomembranes, 2007, 25(1), 2.
41 Lagerwerff J V, Ogata G, Eagle H E. Science, 1961, 133(3463), 1486.
42 Beddoe R A, Take W A, Rowe R K. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11), 1028.
43 Samingan A, Schanz T. Vadose Zone Journal, 2005, 4, 1087.
44 Lei Y, Yang H Y, Zhang Y, et al. Building Science, 2021, 37(2), 165 (in Chinese).
雷玥, 杨寒羽, 张宇, 等. 建筑科学, 2021, 37(2), 165.
45 ASTM C1699-09:Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates1, 2015.
46 ISO 11274:2019 Soil quality-Determination of the water retention characteristic-Laboratory methods, 2019.
47 ASTM D6836-16 Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge, 2016.
48 ISO 15901-1:2016 Evaluation of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 1:Mercury porosimetry, 2016.
49 ASTM D4404-18 Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry, 2018.
50 GB/T 21650. 1-2008. Pore size distribution and porosity of solid mate-rials by mercury porosimetry and gas adsorption-Part 1:Mercury porosimetry. 2008(in Chinese).
GB/T 21650. 1-2008. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第1部分:压汞法, 2008.
51 Feng C, Janssen H, Feng Y, et al. Building and Environment, 2015, 85, 160.
52 Hansen M H. Retention curves measured using pressure plate and pressure membrane apparatus:Description of method and interlaboratory comparison, SBI forlag, Denmark, 1998,
53 Yan G, Li Z, Bore T, et al. In:70th Canadian Geotechnical Conference. Canada, 2017, pp.1.
54 Roels S, Elsen J, Carmeliet J, et al. Materials and Structures, 2001, 34(2), 76.
55 Feng C, Janssen H. Building and Environment, 2021, 195, 107727.
56 van Genuchten M T. Soil Science Society of America Journal, 1980, 44(5), 892.
57 Fredlund D G, Xing A. Canadian Geotechnical Journal, 1994, 31, 521.
58 Feng M, Fredlund D. In:Proceedings from Theory to the Practice of Unsaturated Soil Mechanics in Association with the 52nd Canadian Geotechnical Conference and the Unsaturated Soil Group. Canada, 1999, pp.14.
59 Brunauer S, Emmett P H, Teller E. Journal of the American Chemical Society, 1938, 60, 309.
60 Berg C, Bruin S. Water activity and its estimation in food systems:theoretical aspects, Academic Press, USA, 1981, pp.2.
61 Feng C, Janssen H, Wu C, et al. Building and Environment, 2013, 69, 64.
62 Peleg M. Journal of Food Process Engineering, 1993, 16(1), 21.
63 Han X W, Shao M A, Horton R. Pedosphere, 2010, 20(1), 55.
64 Lamara M, Derriche Z. Electronic Journal of Geotechnical Engineering, 2008, 13,
65 Pan N, Sun Z. Thermal and Moisture Transport in Fibrous Materials, 2006, 102.
66 Blahovec J, Yanniotis S. Food and Bioprocess Technology, 2008, 1, 82.
67 Boquet R, Chirife J, Iglesias H A. International Journal of Food Science & Technology, 1978, 13(4), 319.
68 Alamri M S, Mohamed A A, Hussain S, et al. Journal of Chemistry, 2018, 2018, 2369762.
69 Leng M S, Hiag F T, Minyaka E, et al. Journal of Food Science and Technology, 2019, 56(8), 3887.
70 Néel L. Cahiers de physique, 1943, 13, 18.
71 Néel L. Cahiers de physique, 1942, 12, 1.
72 Mualem Y. Water Resources Research, 1974, 10(3), 514.
73 Everett D H. Transactions of the Faraday Society, 1954, 50, 1077.
74 Everett D H. Transactions of the Faraday Society, 1955, 51, 1551.
75 Philip J R. Journal of Geophysical Research, 1964, 69(8), 1553.
76 Topp G C. Soil Science Society of America Journal, 1971, 35(2), 219.
77 Topp G C. Water Resources Research, 1971, 7(4), 914.
78 Poulovassilis A. Soil Science, 1962, 93, 405.
79 Mualem Y. Water Resources Research, 1973, 9(5), 1324.
80 Parlange J Y. Water Resources Research, 1976, 12(2), 224.
81 Pham H Q, Fredlund D G, Barbour S L. Canadian Geotechnical Journal, 2005, 42(6), 1548.
82 Braddock R D, Parlange J Y, Lee H. Transport in Porous Media, 2001, 44(3), 407.
83 Zhang X, Zillig W, Kuenzel H M, et al. Building and Environment, 2015, 92, 387.
84 Viaene P, Vereecken H, Diels J, et al. Soil Science, 1994, 157(6), 345.
85 Mualem Y. Water Resources Research, 1977, 13(4), 773.
86 Skaar C. Wood-Water Relations, 1988, 122.
87 Peralta P N, Bangi A P. Wood and fiber science, 1998, 30, 148.
88 Mualem Y. Soil Science, 1984, 137(6), 379.
89 Pham H Q, Fredlund D G, Barbour S L. Geotechnique, 2003, 53(2), 293.
90 Kudayr L S, Salim S B. Plant Archives, 2019, 19(1), 1009.
91 Mualem Y. Soil Science, 1984, 137(5), 283.
92 Li X S. Computers and Geotechnics, 2005, 32(2), 133.
93 Kohgo Y. Soils and Foundations, 2008, 48(5), 633.
94 Rode C, Hansen P N, Hansen K K. Combined heat and moisture transfer in building constructions. Ph. D. Thesis, Technical College of Denmark, Denmark, 1990.
95 Carmeliet J, Janssen H. In:Proceedings of 7th Symposium on Building Physics in the Nordic Countries. Denmark, 2005, pp.55.
96 Kwiatkowski J, Woloszyn M, Roux J J. Building and Environment, 2009, 44(3), 633.
97 Parker J C, Lenhard R J. Water Resources Research, 1987, 23(12), 2187.
98 Huang H C, Tan Y C, Liu C W, et al. Hydrological Processes:An International Journal, 2005, 19(8), 1653.
99 Remond R, Almeida G, Perre P T. Construction and Building Mate-rials, 2018, 170, 716. |
|
|
|