POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Biocompatibility of Chitosan Hydrogels Based on Acrylic-N-Succinimidyl Ester Copolymer Crosslinker |
YANG Shuiyan1, SHENG Yang1, SUN Yixin1, CAI Renqin2,*, Mark Bradley3, ZHANG Rong1,*
|
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China 2 Basic Research Institute, Double Medical Technology Inc., Xiamen 361026, Fujian, China 3 School of Chemistry, University of Edinburgh, Scotland EH93JJ, Edinburgh, UK |
|
|
Abstract As a natural amino polysaccharide, chitosan has good biocompatibility and renewable resources, but its application is limited due to poor mechanical properties. In this study, acrylic acid, N-vinylpyrrolidone and acrylic acid N-succinimide ester were used as monomers to obtain terpolymer macromolecular crosslinker, which was mixed with chitosan solution to prepare chitosan hydrogel. The composition, morphology and thermal stability of the synthesized polymer and chitosan gel were characterized by infrared, thermogravimetric analysis and SEM. The results showed that the average molecular weight of acrylate-N-succinimide ester copolymer was 111 900, which was water soluble. The chitosan hydrogel with the copolymer crosslinker showed good mechanical properties, swelling properties and water vapor permeation rate. Compared with the gel membrane prepared under acidic conditions, the thermal decomposition temperature of the crosslinked gel membrane in PBS (pH=7.4) increased, the contact angle of water became larger, and the mechanical properties were greatly improved. Cytotoxicity experiments had shown that chitosan gels have good biocompatibility. Human adipose-derived stem cells formed cell clusters on the gels and secreted exosomes on the chitosan gel membrane. By covering the chitosan gel membrane over the stem cells, the cells grew normally and secreted exosomes. Chitosan gels therefore have the potential to be applied to skin dressings after loading exosomes.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:‘Six Talent Peaks' Team Project in Jiangsu Province (SWYY-CXTD-001), and International Cooperation Project Supported by Changzhou Science and Technology Bureau (CZ20190019). |
|
|
1 Jiang Q, Zhou W, Wang J, et al. International Journal of Biological Macromolecules, 2016, 91, 85. 2 Lima T D P D L, Passos M F. Journal of Biomaterials Science:Polymer Edition, 2021, 32(14), 11. 3 Liang Y, He J, Guo B. ACS Nano, 2021, 15(8), 12687. 4 Wang L R, Zhou M Y, Xu T L, et al. Chemical Engineering Journal, 2022, 433(1), 134625. 5 Zhang X. Construction of polysaccharide based hydrogel dressings based on skin wound microenvironment for injury repair. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2022(in Chinese). 张想. 基于皮肤创面微环境构建多糖基水凝胶敷料及其在损伤修复中的研究. 博士学位论文, 北京化工大学, 2022. 6 Gao Y P. Study on preparation and performance of GelMA-BSP hydrogel for promoting wound healing. Master's Thesis, Southwest Minzu University, China, 2021(in Chinese). 高元平. 促进创面愈合水凝胶GelMA-BSP的制备及性能研究. 硕士学位论文, 西南民族大学, 2021. 7 Kim E, Kim M H, Song J H, et al. International Journal of Biological Macromolecules, 2020, 154, 989. 8 Fei L, Zhao J, Deng C Y. Polymer Science Series A, 2020, 62(5), 494. 9 Ladeira N M B, Donnici C L, de Mesquita J P, et al. Journal of Polymer Research, 2021, 28(9), 335. 10 Yang J, Shen M, Luo Y, et al. Carbohydrate Polymers, 2021, 257, 117608. 11 Shi W, Hass B, Kuss M A, et al. Carbohydrate Polymers, 2020, 233(C), 115803. 12 Bao Y, He J, Song K, et al. Polymers, 2022, 14(4), 769. 13 Koev T T, Muñoz-García J C, Iuga D, et al. Carbohydrate Polymers, 2020, 249, 116834. 14 Michelini L, Probo L, Farè S, et al. Materials Letters, 2020, 272, 1873. 15 Peers S, Montembault A, Ladavière C. Journal of Controlled Release, 2020, 326, 150. 16 Liu Y, Sun Q, Yang X, et al. ACS Applied Materials & Interfaces, 2018, 10, 19730. 17 Solé I, Vílchez S, Montanyà N, et al. Journal of Industrial Textiles, 2019, 50, 526. 18 Hamedi H, Moradi S, Hudson S M, et al. Carbohydrate Polymers, 2018, 199, 445. 19 Mao H, Zhao S, He Y, et al. Carbohydrate Polymers, 2022, 285, 119254. 20 Ackah S, Xue S, Osei R, et al. Frontiers in Microbiology, 2022, 13, 828914. 21 Andrade D O J, Pérez-Álvarez L, Sáez-Martínez V, et al. International Journal of Biological Macromolecules, 2022, 203, 679. 22 Ara C, Jabeen S, Afshan G, et al. International Journal of Biological Macromolecules, 2022, 202, 177. 23 Liu Q, Zhang X, Zhang J. Frontiers in Oncology, 2022, 12, 898605. 24 Kurian T K, Banik S, Gopal D, et al. Molecular Biotechnology, 2021, 63(4), 1. 25 Sancho-Albero M, Medel-Martínez A, Martín-Duque P. RSC Advances, 2020, 10(40), 23975. 26 Shi H, Wang M, Sun Y, et al. Frontiers in Cell and Developmental Biology, 2021, 9, 736022. 27 Zhao D, Yu Z, Li Y, et al. Journal of Molecular Histology, 2020, 51(3), 251. 28 Azaryan E, Karbasi S, Zarban A, et al. Wound Repair and Regeneration, 2022, 30(5), 585. 29 Tao S W. Exosome from adipose-derived mesenchymal stem cells/chitosan hydrogel complex materials for enhancement of skin wound repair. Master's Thesis, Wuhan University of Science and Technology, China, 2022(in Chinese). 陶苏皖. 脂肪间充质干细胞外泌体/壳聚糖水凝胶复合敷料促进皮肤伤口修复. 硕士学位论文, 武汉科技大学, 2022. 30 Chen Y Q. The effect of injectable hydrogel loaded exosome on the osteogenic ability of adipose-derived stem cells. Master's Thesis, China Medical University, China, 2019(in Chinese). 陈义庆. 可注射水凝胶负载外泌体促进脂肪干细胞成骨能力的研究. 硕士学位论文, 中国医科大学, 2019. 31 Liu F, Zhang Y, Wang Y L, et al. Chinese Journal of Tissue Engineering Research, 2021, 25(16), 2479 (in Chinese). 刘冯, 张瑜, 王燕丽, 等. 中国组织工程研究, 2021, 25(16), 2479. 32 Xu N, Wang L, Guan J, et al. International Journal of Biological Macromolecules, 2018, 117, 102. 33 Nooshabadi V T, Khanmohamadi M, Valipour E, et al. Journal of Biomedical Materials Research Part A, 2020, 108(11), 2138. 34 Di Q, Andi Z, Na W, et al. Applied Materials Today, 2021, 108(11), 2138. 35 An Y, Lin S, Tan X, et al. Cell Proliferation, 2021, 54(3), e12993. 36 Cao G, Chen B, Zhang X, et al. Clinical, Cosmetic and Investigational Dermatology, 2020, 13, 957. 37 Liu F, An Y, Sun Y, et al. Stem Cell Reviews and Reports, 2022, 18, 2059. 38 Dehghan-Baniani D, Chen Y, Wang D, et al. Colloids and Surfaces B:Biointerfaces, 2020, 192, 111059. 39 Lopes M, Restni R, Carvalho M P, et al. Reactive & Functional Polymers, 2021, 161, 104846. 40 Luo Y, Cui L, Zou L, et al. Carbohydrate Polymers, 2022, 294, 119774. 41 Hou B N, Shen H L, Li J, et al. Materials Engineering, 2020, 48(4), 73(in Chinese). 候冰娜, 沈惠玲, 李进, 等. 材料工程, 2020, 48(4), 73. 42 Fernandes Q M, Melo K R T, Sabry D A, et al. Marine Drugs, 2015, 13(1), 141. 43 Dey S C, Al-Amin M, Rashid T U, et al. International Journal of Latest Research in Engineering and Technology, 2016, 2(2), 52. 44 Maria B, Luiza-Madalina G, Simona M, et al. Reactive & Functional Polymers, 2021, 170, 105094. 45 Yao H Y, Lin H R, Sue G P, et al. Polymers and Polymer Composites, 2019, 27(3), 155. 46 Zhang D, Zhou W, Wei B, et al. Carbohydrate Polymers, 2015, 125, 189. 47 Catanzano O, Gomez D'ayala G, D'agostino A, et al. Carbohydrate Polymers, 2021, 264, 117987. 48 Long C, Wang J, Gan W, et al. Frontiers in Surgery, 2022, 9, 1030288. 49 Ma J, Zhang Z F, Wang Y M, et al. Experimental Dermatology, 2022, 31(3), 362. |
|
|
|