POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Optimized Synthesis of Lignin Carbon Dots and Its Application in Metal Ions Detection |
DU Peng, LIU Jie, ZHANG Jing, MA Jieyu, GENG Yanyan, CAO Feng*
|
College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215011,Jiangsu, China |
|
|
Abstract Lignin carbon dots(L-CDs)were facilely fabricated by a eco-friendly hydrothermal method using natural biomass lignin as raw material. The morphology and optical properties of L-CDs were studied by transmission electron microscopy, UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The results indicated that the L-CDs have a small size, which is mainly distributed in 2—4 nm with an average particle size of 3.2 nm. There are a large number of hydroxyl groups and other oxygen-containing groups on the surface of L-CDs, which are consistent with the good dispersion of the carbon dots prepared. The maximum excitation wavelength and maximum emission wavelength are 370 nm and 469 nm. L-CDs emit strong blue fluorescence under the irradiation of 365 nm ultraviolet lamp. Using quinine sulfate as a reference, the fluorescence quantum yield of L-CDs is 12%, which is comparable with most reported biomass carbon dots. By optimizing the reaction conditions, the sensitive sensing of L-CDs on Fe3+ in water is realized. The method showed a linear range of 5—400 μmol/L with a detection limit of 1.69 μmol/L, showing excellent sensitivity and selectivity. There is still a high linear correlation in the detection of actual water samples. Moreover, L-CDs have strong fluorescence intensity in neutral and alkaline environments, which is expected to be used for the determination of organic pollutants in natural water samples.
|
Published: 10 March 2023
Online: 2023-03-14
|
|
Fund:National Natural Science Foundation of China (21702143), Natural Science Foundation of Jiangsu Province (BK2017377), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_1400). |
|
|
1 Kausar A. Polymer-plastics Technology and Materials, 2021, 60(7), 695. 2 Omoriyekomwan J E, Tahmasebi A, Dou J X, et al. Fuel Processing Technology, 2021, 214, 106686. 3 Kroener A, Hirsch T. Frontiers in Chemistry, 2020, 7, 927. 4 Liu R H, Li H T, Kong W Q, et al. Materials Research Bulletin, 2013, 48(7), 2529. 5 Tammina S K, Wan Y, Li Y Y, et al. Journal of Photochemistry and Photobiology B-Biology, 2020, 202, 111734. 6 Li C M, Qin Z J, Wang M N, et al. Analytica Chimica Acta, 2020, 1104, 125. 7 Su Y, Liu S, Guan Y Y, et al. Biomaterials, 2020, 255, 120110. 8 Cai H J, Zhu Y L, Xu H L, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2021, 246, 119033. 9 Liu F, Li Z Y, Li Y, et al. Carbon, 2021, 181, 9. 10 Qi H T, Zhang H Q, Wu X M, et al. Chemistry-An Asian Journal, 2020, 15(8), 1281. 11 Su W, Guo R H, Yuan F L, et al. Journal of Physical Chemistry Letters, 2020, 11(4), 1357. 12 Wang H T, Bi J R, Zhu B I, et al. Current Medicinal Chemistry, 2018, 25(25), 2894. 13 Xia J F, Kawamura Y, Suehiro T, et al. Drug Discoveries & Therapeutics, 2019, 13(2), 114. 14 Kumar V B, Borenstein A, Markovsky B, et al. Journal of Physical Chemistry C, 2016, 120(25), 13406. 15 Fu L, Wang A W, Lai G S, et al. Microchimica Acta, 2018, 185(2), 87. 16 Wang Q, Gao Y X, Wang B Y, et al. Journal of Materials Chemistry C, 2020, 8(13), 4343. 17 Chen L, Zheng J X, Du Q, et al. Optical Materials, 2020, 109, 110346. 18 Pylypchuk I, Selyanchyn R, Budnyak T, et al. Membranes, 2021, 11(3), 204. 19 Sun Y C, Wang T T, Sun X Y, et al. Industrial Crops and Products, 2021, 166, 113473. 20 Lyu D, Zhang T C, Wang D Y, et al. Industrial Crops & Products, 2021, 170, 113750. 21 Chen W X, Hu C F, Yang Y H, et al. Materials, 2016, 9(3), 184. 22 Ding H, Li X H, Chen X B, et al. Journal of Applied Physics, 2020, 127(23), 231101. 23 Chio C L, Sain M, Qin W S. Renewable & Sustainable Energy Reviews, 2019, 107, 232. 24 Zhu S J, Meng Q N, Wang L, et al. Angewandte Chemie-International Edition, 2013, 52(14), 3953. 25 He Q, Yu Y X, Wang J, et al. Industrial & Engineering Chemistry Research, 2021, 60(12), 4552. 26 Tae H W, Yang H K, Kee M B. New Physics:Sae Mulli, 2020, 70(2), 125. 27 Ding H, Li X H, Chen X B, et al. Journal of Applied Physics, 2020, 127(23), 231101. 28 Zhu L L, Shen D K, Liu Q, et al. Applied Surface Science, 2021, 565, 150526. 29 Peng J, Gao W, Gupta B K, et al. Nano Letters, 2012, 12(2), 844. 30 Zu F L, Yan F Y, Bai Z J, et al. Microchimica Acta, 2017, 184(7), 1899. 31 Batool M, Junaid H M, Tabassum S, et al. Critical Reviews in Analytical Chemistry, 2020, 52(4), 756. 32 Vikneswaran R, Ramesh S, Yahya R. Materials Letters, 2014, 136, 179. 33 Wang R X, Wang X F, Sun Y M. Sensors and Actuators B-Chemical, 2017, 241, 73. 34 Nair S S P, Kottam N, Kumar S G P. Journal of Fluorescence, 2020, 30(2), 357. 35 Zhang J Q, Yan J P, Wang Y T, et al. Journal of Nanoscience and Nanotechnology, 2018, 18(7), 4457. 36 Sh Y X, Liu X, Wang M, et al. International Journal of Biological Macromolecules, 2019, 128, 537. |
|
|
|