POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Application of Natural Biodegradable Polymer Wall Materials in Microcapsules |
CAO Jin'an1,2, WANG Jingping1,*, XU Youlong1,*, SHAO Liang2, GUO Siqi2, WANG Xuechuan3
|
1 Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Key Laboratory of Electronic Ceramics and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China 2 College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China 3 College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China |
|
|
Abstract Microcapsules are micro-containers with polymer eggshells. The stability and freshness of the embedded core material of such capsules can be improved, and the release rate of the core material can be controlled effectively. However, the microcapsule wall material critically affects the final performance of a microcapsule. In this context, from the green and sustainable development perspective, the use of microcapsules with natural biodegradable polymer wall materials is gaining increasing attention. The mechanical strength, solubility, emulsification, and stability of natural biodegradable polymers meet the requirements of microencapsulation walls. Therefore, microcapsules fabricated using natural biodegradable polymers have promising application prospects in the medical, pharmaceutical, food, and cosmetic industries. Three groups of biodegradable polymers, polysaccharides, proteins and lipids, are prevalently used as natural microcapsule wall materials. This study reviews the recent literature on the use of natural biodegradable polymers as microencapsulated wall materials and discusses in detail their functional properties, encapsulation principles, microencapsulation techniques, and application prospects. It was concluded that the microcapsules prepared using polysaccharides have a low cost, better water dispersion, faster release rate, and higher utilization of core materials. The proteins have an excellent emulsification property, which results in a higher encapsulation efficiency and loading capacity of the protein-wall microcapsules. The lipids exhibit excellent performance in the encapsulation of hydrophilic substances. Therefore, the use of various natural biodegradable polymers as microcapsule walls should be mainstreamed in the industrial preparation of microcapsules. The investigation of the harmless modification of natural biodegradable polymers and their microencapsulation processes through molecular self-assembly are possible future research hotspots.
|
Published: 25 September 2023
Online: 2023-09-18
|
|
Fund:National Natural Science Foundation of China (22078183), and the Key Research and Development of Shaanxi Provincial Department of Science and Technology (2021GY-238). |
|
|
1 Tong W J, Song X X, Gao C Y. Chemical Society Reviews, 2012, 41(18), 6103. 2 Lombardo S, Villares A. Molecules, 2020, 25(19), 4420. 3 Zhang Z H, Zhong S R, Peng F, et al. Food Science, 2020, 41(9), 246 (in Chinese). 章智华, 钟舒睿, 彭飞, 等. 食品科学, 2020, 41(9), 246. 4 Quintero J, Rojas J, Ciro G. Food Research, 2018, 2(3), 208. 5 Choi Y H, Hwang J S, Han S H, et al. Advanced Functional Materials, 2021, 31(24), 2100782. 6 Fanger G O. Microencapsulation, Springer, Boston, MA, 1974, pp. 1. 7 Kupikowska S B, Lewińska D. Biomaterials Science, 2020, 8(6), 1536. 8 Hoyos L J D, Bello P L A, Alvarez R J, et al. Food Reviews Internatio-nal, 2018, 34(2), 148. 9 Ozkan G, Franco P, De Marco I, et al. Food Chemistry, 2019, 272, 494. 10 Sun Z, Zhao L J, Wan H X, et al. Chemical Engineering Journal, 2020, 396, 125317. 11 Bah M G, Bilal H M, Wang J. Soft Matter, 2020, 16(3), 570. 12 Lengyel M, Kállai S N, Antal V, et al. Scientia Pharmaceutica, 2019, 87(3), 20. 13 Valle J A B, Valle R D C S C, Bierhalz A C K, et al. Journal of Applied Polymer Science, 2021, 138(21), 50482. 14 He S H, Zhong S L, Xu L F, et al. International Journal of Biological Macromolecules, 2020, 155, 42. 15 Meng Y W, Nicol E, Nicolai T. Journal of Colloid and Interface Science, 2022, 617, 65. 16 Li X F, Erni P, Van Der Gucht J, et al. ACS Applied Materials & Interfaces, 2020, 12(13), 15802. 17 Chen K L, Xu C Y, Zhou J L, et al. Carbohydrate Polymers, 2020, 232, 115821. 18 Kozlowska J, Kaczmarkiewicz A. Polymer Degradation and Stability, 2019, 161, 108. 19 Parente J F, Sousa V I, Marques J F, et al. Advances in Polymer Techno-logy, 2022, 2022, 4640379. 20 Jana P, Shyam M, Singh S, et al. European Polymer Journal, 2021, 142, 110155. 21 Zhuo Z Y, Song S N, Bai X J, et al. Packaging Engineering, 2021, 42(15), 112 (in Chinese). 卓祖优, 宋生南, 白小杰, 等. 包装工程, 2021, 42(15), 112. 22 Idrees H, Zaidi S Z J, Sabir A, et al. Nanomaterials, 2020, 10(10), 1970. 23 Bégin A, Van Calsteren M R. International Journal of Biological Macromolecules, 1999, 26(1), 63. 24 Peniche C, Argüelles M W, Peniche H, et al. Macromolecular Bio-science, 2003, 3(10), 511. 25 Hu Y Q, Wu T T, Wu C H, et al. Food Control, 2017, 72, 43. 26 Mu X T, Ju X J, Zhang L, et al. Journal of Membrane Science, 2019, 590, 117275. 27 Martâu G A, Mihai M, Vodnar D C. Polymers, 2019, 11(11), 1837. 28 Gonçalves N D, Grosso C R, Rabelo R S, et al. Carbohydrate Polymers, 2018, 196, 427. 29 Dima C, Pâtraşcu L, Cantaragiu A, et al. Food Chemistry, 2016, 195, 39. 30 Hecht H, Srebnik S. Biomacromolecules, 2016, 17(6), 2160. 31 Liu X D, Yu W T, Wang W, et al. Progress in Chemistry, 2008, 20(1), 126 (in Chinese). 刘袖洞, 于炜婷, 王为, 等. 化学进展, 2008, 20(1), 126. 32 Zhang W B, He S, Liu Y, et al. ACS Applied Materials & Interfaces, 2014, 6(14), 11783. 33 He R J, Yang S, Sun P L, et al. Food & Machinery, 2010, 26(2), 166 (in Chinese). 何荣军, 杨爽, 孙培龙, 等. 食品与机械, 2010, 26(2), 166. 34 Martins E, Poncelet D, Rodrigues R C, et al. Journal of Microencapsulation, 2017, 34(8), 754. 35 Sahoo D R, Biswal T. SN Applied Sciences, 2021, 3(1), 1. 36 Strobel S A, Scher H B, Nitin N, et al. Food Hydrocolloids, 2016, 58, 141. 37 Ma M L, Chiu A, Sahay G, et al. Advanced Healthcare Materials, 2013, 2(5), 667. 38 Rocha C E, Silva M F, Guedes A C, et al. International Journal of Biological Macromolecules, 2021, 176, 567. 39 Sun X X, Cameron R G, Bai J. Food Hydrocolloids, 2020, 100, 105420. 40 Dehkordi S S, Alemzadeh I, Vaziri A S, et al. Applied Biochemistry and Biotechnology, 2020, 190(1), 182. 41 Hu S X, Kuwabara R, Chica C E N, et al. Biomaterials, 2021, 266, 120460. 42 Liang L, Luo Y C. Trends in Food Science & Technology, 2020, 97, 391. 43 Xie M Y, Li J, Nie S P. Journal of Chinese Institute of Food Science and Technology, 2013, (8), 1 (in Chinese). 谢明勇, 李精, 聂少平. 中国食品学报, 2013, (8), 1. 44 Roy A, Singh S, Bajpai J,et al. Open Chemistry, 2014, 12(4), 453. 45 Grant G T, Morris E R, Rees D A, et al. FEBS Letters, 1973, 32(1), 195. 46 Noh J, Kim J, Kim J S, et al. Carbohydrate Polymers, 2018, 182, 172. 47 Wang W J, Feng Y M, Chen W J, et al. Ultrasonics Sonochemistry, 2021, 70, 105322. 48 Qian J Q, Chen Y, Wang Q, et al. European Polymer Journal, 2021, 157, 110676. 49 Hu X X, Liu C Y, Zhang H T, et al. International Journal of Biological Macromolecules, 2021, 193, 1050. 50 Li F F, Wang H F, Mei X H. Journal of Food Engineering, 2021, 311, 110728. 51 Carra J B, De Matos R L N, Novelli A P, et al. Food Chemistry, 2022, 368, 130817. 52 Patel S, Goyal A. International Journal of Food Properties, 2015, 18(5), 986. 53 Williams P A, Phillips G O. Handbook of hydrocolloids (3rd ed.), Elsevier, Woodhead, 2021, pp. 627. 54 Mate C J, Mishra S. Journal of Polymers and the Environment, 2020, 28(6), 1579. 55 Padil V V T, Senan C, Ćerník M. Materials for biomedical engineering, Elsevier, Netherlands, 2019, pp. 127. 56 Bucurescu A, Blaga A C, Estevinho B N, et al. Food and Bioprocess Technology, 2018, 11(10), 1795. 57 Kang Y R, Lee Y K, Kim Y J, et al. Food Chemistry, 2019, 272, 337. 58 Butstraen C, Salaün F. Carbohydrate Polymers, 2014, 99, 608. 59 De Almeida P D, Martins E M F, De Almeida C N, et al. International Journal of Biological Macromolecules, 2019, 133, 722. 60 Eratte D, Wang B, Dowling K, et al. Food & Function, 2014, 5(11), 2743. 61 Willfahrt A, Steiner E, Hötzel J, et al. Applied Physics A: Materials Science & Processing, 2019, 125(7), 1. 62 Nasrollahzadeh M, Sajjadi M, Iravani S, et al. Carbohydrate Polymers, 2021, 251, 116986. 63 Shao M, Li S N, Tan C P, et al. International Journal of Biological Macromolecules, 2021, 173, 118. 64 Irani F, Ranjbar Z, Jannesari A, et al. Progress in Organic Coatings, 2019, 131, 203. 65 Janaswamy S. Carbohydrate Polymers, 2014, 101, 600. 66 Hoyos L J D, Bello P L A, Agama A J E, et al. LWT-Food Science and Technology, 2019, 101, 526. 67 Hoyos L J D, Chavez S A, Castellanos G F, et al. Food Hydrocolloids, 2018, 83, 143. 68 He H Z, Hong Y, Gu Z B, et al. Carbohydrate Polymers, 2016, 147, 243. 69 Sharif H R, Williams P A, Sharif M K, et al. Food Hydrocolloids, 2017, 66, 365. 70 Lei M, Jiang F C, Cai J, et al. International Journal of Biological Macromolecules, 2018, 111, 755. 71 Li H T, Turner M S, Dhital S. LWT-Food Science and Technology, 2016, 74, 542. 72 Kim J Y, Huber K C. Carbohydrate Polymers, 2016, 136, 394. 22010221-1773 Deng J. Preparation and characterization of slow-release fragrance based on β-cyclodextrin cavity structure.Master's Thesis, Shanghai Institute of Technology, China, 2019 (in Chinese). 邓娟. 基于β-环糊精空腔结构的缓释香精的制备及表征. 硕士学位论文, 上海应用技术大学, 2019. 74 Crini G, Fourmentin S, Fenyvesi É, et al. Cyclodextrin fundamentals, reactivity and analysis, Springer, Switzerland, 2018, pp. 4. 75 Uekama K, Otagiri M. Critical Reviews in Therapeutic Drug Carrier Systems, 1987, 3(1), 1. 76 Chen W, Yang L J, Ma S X, et al. Carbohydrate Polymers, 2011, 84(4), 1321. 77 Bezerra F M, Lis M J, Firmino H B, et al. Molecules, 2020, 25(16), 3624. 78 Huang C Y, Yeh T F, Hsu F L, et al. Molecules, 2018, 23(5), 1107. 79 Huang H H, Huang C X, Yin C, et al. Journal of the Science of Food and Agriculture, 2020, 100(13), 4849. 80 Yang Y X, Huan C, Liang X R, et al. Molecules, 2019, 24(21), 3962. 81 Li R, Jiang S, Jiang Z T. Journal of Essential Oil Bearing Plants, 2017, 20(6), 1511. 82 Zhao Z Y, Zhang X J, Cui Y T, et al. Powder Technology, 2019, 358, 29. 83 Pellicer J A, Rodríguez López M I, Fortea M I, et al. Polymers, 2019, 11(2), 252. 84 Azizi N, Abdelkader M B, Chevalier Y, et al. Fibers and Polymers, 2019, 20(4), 683. 85 Bose R J C, Kim M, Chang J H, et al. Journal of Industrial and Engineering, 2019, 77, 12. 86 Han S B. Thermoelectric polymer-cellulose composite aerogels, Linköping University Electronic Press, Sweden, 2019, pp. 13. 87 Kedzior S A, Gabriel V A, Dubé M A, et al. Advanced Materials, 2020, 33(28), 2002404. 88 Han J, Seo Y. Materials, 2021, 14(18), 5273. 89 Furlan D M. Journal of Materials Research and Technology, 2019, 8(2), 2170. 90 Carrick C, Larsson P A, Brismar H, et al. RSC Advances, 2014, 4(37), 19061. 91 Liu Z, Wang H S, Liu C, et al. Chemical Communications, 2012, 48(59), 7350. 92 Peng S, Meng H C, Zhou L, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(9), 7010. 93 Pang L, Gao Z D, Feng H J, et al. Journal of Controlled Release, 2019, 316, 105. 94 Oprea M, Voicu S I. Carbohydrate Polymers, 2020, 247, 116683. 95 Gopinath V, Saravanan S, Al Maleki A, et al. Biomedicine & Pharmacotherapy, 2018, 107, 96. 96 Zhang Z F. Chemical Industry Engineering Progress, 2010, 29(8), 1493 (in Chinese). 张智峰. 化工进展, 2010, 29(8), 1493. 97 Lin Y X, Zhu C Q, Alva G, et al. Applied Energy, 2018, 231, 494. 98 Wu Q X, Guan Y X, Yao S J. Frontiers of Chemical Science and Engineering, 2019, 13(1), 46. 99 Song J, Babayekhorasani F, Spicer P T. Biomacromolecules, 2019, 20(12), 4437. 100 Brun G A K A S, Richard C, Bessodes M, et al. Journal of Controlled Release, 2011, 149(3), 209. 101 Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Carbohydrate Polymers, 2018, 187, 66. 102 Vogelstein B, Gillespie D. Proceedings of the National Academy of Sciences, 1979, 76(2), 615. 103 Yazdi M K, Taghizadeh A, Taghizadeh M, et al. Journal of Controlled Release, 2020, 326, 523. 104 Youssefi A M, Nasirinezhad M, Naeim H, et al. Journal of Composite Materials, 2021, 5(5), 125. 105 Nazari S F, Hashemi P, Rasoolzadeh F. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 47. 106 Ellis A, Jacquier J. Journal of Food Engineering, 2009, 90(2), 141. 107 Xiao Q, Chen G, Zhang Y H, et al. International Journal of Biological Macromolecules, 2020, 163, 2314. 108 Kobayashi T, Aomatsu Y, Iwata H, et al. Transplantation, 2003, 75(5), 619. 109 Huo W Q, Xie G C, Zhang W X, et al. International Journal of Biological Macromolecules, 2016, 87, 114. 110 Zhang B, Yang T Y, Wang Q B, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 128. 111 Lam P L, Gambari R, Kok S L, et al. International Journal of Molecular Medicine, 2015, 35(2), 503. 112 Liu C, Xu Z B, Liu J F, et al. Materials & Design, 2021, 209, 109952. 113 Yang J, Hou Z Q, He W H, et al. Food and Fermentation Industry, 2009, 35(5), 122 (in Chinese). 杨佳, 侯占群, 贺文浩, 等. 食品与发酵工业, 2009, 35(5), 122. 114 Polekkad A, Franklin M E E, Pushpadass H A, et al. Powder Technology, 2021, 381, 1. 115 Parikh A, Agarwal S, Raut K. System, 2014, 4, 6. 116 Liu W H, Wang J, Wang J, et al. Chinese Food Additives, 2007(2), 183 (in Chinese). 刘文慧, 王颉, 王静, 等. 中国食品添加剂, 2007(2), 183. 117 Shen Z, Augustin M A, Sanguansri L, et al. Journal of Agricultural Food Chemistry, 2010, 58(7), 4487. 118 Encina C, Vergara C, Giménez B, et al. Trends in Food Science & Technology, 2016, 56, 46. 119 Drusch S, Serfert Y, Van Den Heuvel A, et al. Food Research International, 2006, 39(7), 807. 120 Jia Z, Dumont M J, Orsat V. Food Bioscience, 2016, 15, 87. 121 Zhang Y X, Cai D, Song Q M, et al. Grain and Oil Processing (Electro-nic Version), 2015(6), 65 (in Chinese). 张予心, 蔡丹, 宋秋梅, 等.粮油加工 (电子版), 2015(6), 65. 122 Keri M N D. Alternative Medicine Review, 2004, 9(2), 136. 123 Je Lee S, Rosenberg M. LWT-Food Science and Technology, 2000, 33(2), 80. 124 Zhang Z H, Peng H, Woo M W, et al. Journal of Food Engineering, 2020, 267, 109729. 125 Parthasarathi S, Anandharamakrishnan C. Food and Bioproducts Proces-sing, 2016, 100, 469. 126 Balakrishnan G, Nguyen B T, Schmitt C, et al. Food Hydrocolloids, 2017, 73, 213. 127 Wang B, Adhikari B, Barrow C J. Powder Technology, 2019, 358, 79. 128 Hu Y, Li Y, Zhang W L, et al. Food Hydrocolloids, 2018, 77, 588. 129 Tardy B L, Mattos B D, Otoni C G, et al. Chemical Reviews, 2021, 121(22), 14088. 130 Qiu J H, Zheng Q X, Fang L, et al. Carbohydrate Polymers, 2018, 196, 322. 131 Holt C. International Dairy Journal, 2016, 60, 2. 132 Chen H Q, Wooten H, Thompson L, et al. Biopolymer nanostructures for food encapsulation purposes, Elsevier, Academic, 2019, pp. 39. 133 Beau M. Le Lait, 1921, 1(1), 19. 134 Gab T K, Boratyński J. Topics in Current Chemistry, 2017, 375(71), 1. 135 Ghayour N, Hosseini S M H, Eskandari M H, et al. Food Hydrocolloids, 2019, 87, 394. 136 Pan K, Zhong Q X, Baek S J. Journal of Agricultural Food Chemistry, 2013, 61(25), 6036. 137 Zhang Y, Pan K,Zhong Q X. Food Biophysics, 2018, 13(1), 37. 138 Yang M, Wei Y M, Ashokkumar M, et al. Ultrasonics Sonochemistry, 2020, 62, 104861. 139 Pan K, Luo Y C, Gan Y D, et al. Soft Matter, 2014, 10(35), 6820. 140 Vaucher A C D S, Dias P C, Coimbra P T, et al. Journal of Microencapsulation, 2019, 36(5), 459. 141 Jain A, Thakur D, Ghoshal G, et al. International Journal of Biological Macromolecules, 2016, 87, 101. 142 Ravanfar R, Celli G B, Abbaspourrad A. ACS Applied Materials & Interfaces, 2018, 10(6), 6046. 143 Baumgartner M, Hartmann F, Drack M, et al. Nature Materials, 2020, 19(10), 1102. 144 Gómez G M C, Giménez B, López C M E, et al. Food Hydrocolloids, 2011, 25(8), 1813. 145 Dang X G, Yang M, Shan Z H, et al. Materials Science & Engineering C: Biomimetic and Supramolecular Systems, 2017, 74, 493. 146 Yang J L, Zhou Z Y, Liang Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(35), 13440. 147 Muhoza B, Xia S Q, Wang X J, et al. Food Hydrocolloids, 2020, 105, 105807. 148 Saravanan M, Rao K P. Carbohydrate Polymers, 2010, 80(3), 808. 149 Prata A, Grosso C. Carbohydrate Polymers, 2015, 116, 292. 150 Chua J Y, Liu S Q. Trends in Food Science & Technology, 2019, 91, 24. 151 Lou W Y, Zhong S R, Zhang Z H, et al. Journal of South China University of Technology (Natural Science Edition), 2019, 47(12), 116 (in Chinese). 娄文勇, 钟舒睿, 章智华, 等. 华南理工大学学报 (自然科学版), 2019, 47(12), 116. 152 Chen F P, Liu L L, Tang C H. Food Hydrocolloids, 2020, 105, 105821. 153 Di Giorgio L, Salgado P R, Mauri A N. Food Hydrocolloids, 2019, 87, 891. 154 Castro M A A, Alric I, Brouillet F, et al. AAPS PharmSciTech, 2018, 19(3), 1124. 155 Huang G Q, Wang H O, Wang F W, et al. International Journal of Biological Macromolecules, 2020, 155, 1194. 156 Wang T, Chen K R, Zhang X Z, et al. Ultrasonics Sonochemistry, 2021, 77, 105700. 157 Shi Y Q, Liang R, Chen L, et al. Food Hydrocolloids, 2019, 87, 582. 158 Du Y L, Huang G Q, Wang H O, et al. Journal of Food Engineering, 2018, 234, 91. 159 Mansour M, Salah M, Xu X Y. Ultrasonics Sonochemistry, 2020, 63, 104927. 160 Patel A R, Velikov K P. Current Opinion in Colloid & Interface Science, 2014, 19(5), 450. 161 Labib G. Expert Opinion on Drug Delivery, 2017, 15(1), 65. 162 Hu B, Han L Y, Ma R X, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 11936. 163 Rosa M T M G, Alvarez V H, Albarelli J Q, et al. Journal of Supercritical Fluids, 2020, 159, 104499. 164 Xu Q N, Bai Z X, Ma J Z, et al. Journal of Applied Polymer Science, 2021, 138(36), 50921. 165 Hu M X, Chen X L, Song L J, et al. Journal of Applied Polymer Science, 2020, 138(19), 50403. 166 Franco P, Reverchon E, De Marco I. Journal of CO2 Utilization, 2018, 27, 366. 167 Zhang X, Hu B, Zhao Y G, et al. Langmuir, 2021, 37(35), 10424. 168 Cheng H, Khan M A, Xie Z F, et al. Food Hydrocolloids, 2020, 103, 105675. 169 Zhang Y B, Sun C Z, Wang C, et al. Chemical Reviews, 2021,121(20), 12181. 170 Nahum V, Domb A J. Foods, 2021, 10(2), 400. 171 Akbarzadeh A, Rezaei S R, Davaran S, et al. Nanoscale Research Letters, 2013, 8(1), 1. 172 Hasan M, Belhaj N, Benachour H, et al. International Journal of Pharmaceutics, 2014, 461(1-2), 519. 173 Wang S J, Shi Y, Tu Z C, et al. Journal of Food Engineering, 2017, 207, 73. 174 Xu J S. Microencapsulation of soybeanlecithin and its properties. Master's Thesis, Nanchang University, China, 2010 (in Chinese). 徐井水. 大豆卵磷脂微胶囊化及其性质研究. 硕士学位论文, 南昌大学, 2010 175 Peng S F, Zou L Q, Liu W, et al. Journal of Agricultural and Food Chemistry, 2018, 66(46), 12421. 176 Nguyen T L, Nguyen T H, Nguyen D H. International Journal of Biomaterials, 2017, 2017, 1. 177 Paini M, Daly S R, Aliakbarian B, et al. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1067. 178 Brresen B, Henriksen J R, Clergeaud G, et al. ACS Nano, 2018, 12(11), 11386. 179 Allen T M. Nature Reviews Cancer, 2002, 2(10), 750. 180 Miranda D, Carter K, Luo D, et al. Advanced Healthcare Materials, 2017, 6(16), 1700253. 181 Mehnert W, Mäder K. Advanced Drug Delivery Reviews, 2012, 64, 83. 182 Gordillo G A, Mora H C E. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 285. 183 Tenchov R, Bird R, Curtze A E, et al. ACS Nano, 2021, 15(11), 16982. 184 Kukizaki M. Chemical Engineering Journal, 2009, 151(1-3), 387. 185 Bazzarelli F, Piacentini E, Giorno L. Journal of Membrane Science, 2017, 541, 587. 186 Kalaycioglu G D, Aydogan N. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124037. 187 Han S, Dwivedi P, Mangrio F A, et al. Artificial Cells Nanomedicine and Biotechnology, 2019, 47(1), 957. 188 Torres O, Murray B, Sarkar A. Trends in Food Science & Technology, 2016, 55, 98. |
|
|
|