METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Technological Advances in Strengthening the Surface Wear Resistance of Aluminum Alloys Substrate |
HAN Bingyuan1,2, GAO Xianghan1, DU Wenbo2, LEI Weining1, LI Shaosong3, CONG Mengqi1, HANG Weixing1, DU Wei1, ZHU Sheng2, *
|
1 School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China 2 National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China 3 National Key Laboratory for Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China |
|
|
Abstract Characterized by low density, high strength and easy processing, aluminum (Al) alloy materials have already been used in various industrial applications, including automobile, aerospace, etc. Many surface engineering technologies have been developed to tailor the properties of Al alloys for improving their service life in the wear and corrosion environment. Based on this, the research work of nine surface technologies such as plasma spraying, arc spraying, flame spraying, laser remelting, argon arc remelting, cold spraying, electric spark deposition, laser cladding, micro arc oxidation on aluminum alloy treatment to strengthen the wear resistance is summarized in this paper. Related works reported that these technologies improved the wear resistance of the Al alloy matrix to some extent. For example, plasma-sprayed coatings can effectively reduce substrate wear at high temperatures. The coating prepared by remelting technology has higher hardness and better wear resistance than the spray coating. The cold sprayed coatings using hard particles exhibit remarkably enhanced microhardness. In the deposits prepared by EDM, the uniformly distributed Si phases forming a tendril-like structure can greatly reduce the friction coefficient of the matrix, because they exhibit high strength. Meanwhile, this paper summarizes the merits and demerits of the mentioned technologies and their applicability. For instance, the thermal spray is efficient but easy to bring about thermal stress concentration, leading to a reduced bonding strength between coating and matrix. The argon arc remelting is inappropriate to tailor the low-melting-point evaporable metals and alloys. By comparison, laser remelting can diminish the porosity and oxide inclusions, but its equipment cost too much. Finally, this paper offers a prospect for strategies of compounding technology treatment, process optimization and new technology research & development to further improve wear resistance of Al alloys.
|
Published: 25 May 2023
Online: 2023-05-23
|
|
Fund:Natural Science Foundation of Jiangsu Province (BK20191036) and Foundation of Research Project of China (JCKY61420051911). |
|
|
1 Li Z Q, Li S, Duan T Y, et al. Material Development and Application, 2020, 35(3), 57 (in Chinese). 李志强, 李晟, 段天应, 等. 材料开发与应用, 2020, 35(3), 57. 2 Vignesh R, Padmanaban A. Materials Today:Proceedings, 2018, 5, 90. 3 Chen Y F. Study on repair technology of aluminum alloy automobile body plug welding. Master's Thesis, Southwest University of Science and Technology, China, 2019 (in Chinese). 陈元富. 铝合金汽车车身塞焊修复工艺研究. 硕士学位论文, 西南科技大学, 2019. 4 Rao Y Q, Wang Q, Daisuke A, et al. Surface & Coatings Technology, 2020, 383, 113. 5 Kong L C, Feng S Q, Dong T S, et al. Light Alloy Processing Technology, 2021, 49(4), 54(in Chinese). 孔令晨, 冯胜强, 董天顺, 等. 轻合金加工技术, 2021, 49(4), 54. 6 Chen S Y, Ma G Z, Wang H D, et al. Surface & Coatings Technology, 2018, 344, 45. 7 Ranjan A, Ialam A, Pathak M, et al. Vacuum, 2019, 168, 108. 8 Jia B, Pan F S, Chen C J. Surface Technology, 2020, 49(8), 55 (in Chinese). 贾碧, 潘复生, 陈春江. 表面技术, 2020, 49(8), 55. 9 Tyagi A, Pandey S M, Murtaza Q, et al. Materials Today:Proceedings, 2020, 25, 759. 10 Cao H S, Liu F J, Li H, et al. Diamond and Related Materials, 2021, 50, 95. 11 Hu Y J, Li M, Liu Y P, et al. Hot Working Process, 2019, 48(6), 141 (in Chinese). 胡艳娇, 李敏, 刘宇平, 等. 热加工工艺, 2019, 48(6), 141. 12 Pal S, Deore A, Choudhary A, et al. Materials Science and Engineering, 2017, 263, 62. 13 Vaibhav K B, Ramesh M. Transactions of the Indian Institute of Metals, 2018, 71, 51. 14 Naveena B, Keshavamurthy R, Sekhar N. Silicon, 2019, 11, 225. 15 Wang Q, Rui X, Wang Q J, et al. Surface & Coatings Technology, 2019, 367, 57. 16 He L, Tan Y, Wang X L, et al. Applied Surface Science, 2014, 314, 47. 17 Daram P, Munroe R, Banjongprasert C. Surface & Coatings Technology, 2020, 10, 391. 18 Liu Z W. Study on process parameter optimization and performance of arc spraying Zn-Al coating. Master's Thesis, Guangdong University of Technology, China, 2019(in Chinese). 刘正卫. 电弧喷涂锌铝涂层工艺参数优化及性能研究. 硕士学位论文, 广东工业大学, 2019. 19 Wu D, Fan Z S, Yang Y. Materials Science Forum, 2019, 94, 499. 20 Munoz D P, Marulanda J L, Tristancho J L. Dyna, 2020, 87, 22. 21 Lyu X W. Study on corrosion behavior and residual stress of arc spraying coatings. Master's Thesis, China University of Petroleum, China, 2017 (in Chinese). 吕显威. 电弧喷涂涂层的腐蚀行为及残余应力研究. 硕士学位论文, 中国石油大学, 2017. 22 Xi X, Xia Y Q, Cao Z F, et al. China Mechanical Engineering, 2017, 28(2), 215(in Chinese). 席翔, 夏延秋, 曹正锋, 等. 中国机械工程, 2017, 28(2), 215. 23 Wang J X, Liu J S. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 469. 24 Li Q L, Luo H, Song P, et al. Metal Heat Treatment, 2017, 42(6), 6(in Chinese). 李乔磊, 罗恒, 宋鹏, 等. 金属热处理, 2017, 42(6), 6. 25 Li Q L, Song P, Ji Q, et al. Surface & Coatings Technology, 2019, 374, 70. 26 Li H Y, Liu H, Zhang X J, et al. Journal of Chemical Industry, 2021, 12(5), 1(in Chinese). 李海燕, 刘欢, 张秀菊, 等. 化工学报, 2021, 12(5), 1. 27 Donadei V, Koiyuluoto H, Sarlin E, et al. Surface and Coatings Techno-logy, 2020, 403, 90. 28 Xin W, Wang Y J, Wei S C, et al. Journal of Engineering Science, 2021, 43(2), 170(in Chinese). 辛蔚, 王玉江, 魏世丞, 等. 工程科学学报, 2021, 43(2), 170. 29 Hutsayluk V, Student M, Zadorozhna K, et al. Journal of Materials Research and Technology, 2020, 9, 20. 30 Jamshidi R, Bayat O, Heidarpour A. Surface and Coatings Technology, 2019, 358, 1. 31 Han F H, Chang X, Zhang X B, et al. Electroplating and Environmental Protection, 2014, 34(2), 32(in Chinese). 韩付会, 昌霞, 张小彬, 等. 电镀与环保, 2014, 34(2), 32. 32 Lakshmi S G, Reddy G M, Roy M. Transactions of the Indian Institute of Metals, 2018, 55, 62. 33 Wang J H, Zhang Z M. Metal Heat Treatment, 2019, 44(5), 193 (in Chinese). 王江慧, 张治民. 金属热处理, 2019, 44(5), 193. 34 Dorfman M R. Handbook of environmental degradation of materials, William Andrew Publishing, China, 2018, pp. 469. 35 Xin W, Wang Y J, Wei S C, et al. Journal of Engineering Science, 2021, 20(2), 1(in Chinese). 辛蔚, 王玉江, 魏世丞, 等. 工程科学学报, 2021, 20(2), 1. 36 Jin Z A, Zhu L N, Liu M, et al. Surface Technology, 2019, 48(10), 220 (in Chinese). 靳子昂, 朱丽娜, 刘明, 等. 表面技术, 2019, 48(10), 220. 37 Fu L, Chen X M, Zhao J, et al. Hot Working Process, 2021, 59(6), 1(in Chinese). 伏利, 陈小明, 赵坚, 等. 热加工工艺, 2021, 59(6), 1. 38 Ma L, Zhang Y M. Surface Technology, 2016, 45(4), 218 (in Chinese). 马力, 张亚明. 表面技术, 2016, 45(4), 218. 39 Zhou X K. Effect of argon arc remelting on microstructure and properties of Ni-based plasma sprayed coatings. Master's Thesis, Hebei University of Technology, China, 2018 (in Chinese). 周秀锴. 氩弧重熔对Ni基等离子喷涂层组织及性能的影响. 硕士学位论文, 河北工业大学, 2018. 40 Dong T S, Zheng X D, Meng H J, et al. Surface Technology, 2018, 47(12), 155 (in Chinese). 董天顺, 郑晓东, 孟宏杰, 等. 表面技术, 2018, 47(12), 155. 41 Xu C K. Basic research on laser remelting Al2O3-TiO2 ceramic coating by plasma spraying. Master's Thesis, Xinjiang university, China, 2018 (in Chinese). 徐承凯. 等离子喷涂激光重熔Al2O3-TiO2陶瓷涂层基础研究. 硕士学位论文, 新疆大学, 2018. 42 Dong T S, Zheng X, Li G, et al. Journal of Engineering Materials and Technology, 2018, 140, 55. 43 Zhang G D, Zheng F, Gong Z, et al. Electric Welding Machine, 2018, 48(5), 85(in Chinese). 张国栋, 郑飞, 龚卓, 等. 电焊机, 2018, 48(5), 85. 44 Wang X, Feng Y, Zhao L H, et al. Light Alloy Processing Technology, 2020, 48(1), 40 (in Chinese). 王旭, 冯阳, 赵利辉, 等. 轻合金加工技术, 2020, 48(1), 40. 45 He W. Study on inhibition mechanism of micro-defects of Fe-based Ni/WC coating by laser remelting process parameters. Master's Thesis, Jiangxi University of Science and Technology, China, 2018 (in Chinese). 何文. 激光重熔工艺参数对喷涂Fe基Ni/WC涂层微观缺陷的抑制机制研究. 硕士学位论文, 江西理工大学, 2018. 46 Liang R Y, Huang C P, Hao H W, et al. Journal of Materials Research and Technology, 2020, 60, 33. 47 Wang J G, Gao S Y, Chen X S, et al. Chinese Journal of Lasers, 2021, 59(1), 1 (in Chinese). 王建刚, 高士友, 陈旭升, 等. 中国激光, 2021, 59(1), 1. 48 Wang J G, Gao S Y, Chen X S, et al. China Laser, 2020, 47(4), 72 (in Chinese). 王建刚, 高士友, 陈旭升, 等. 中国激光, 2020, 47(4), 72. 49 Chen S X, Brodan R, Justin D, et al. Journal of Manufacturing Processes, 2018, 32, 56. 50 Liu M, Chen S Y, Ma G Z, et al. Journal of Mechanical Engineering, 2020, 56(10), 64(in Chinese). 刘明, 陈书赢, 马国政, 等. 机械工程学报, 2020, 56(10), 64. 51 Wang Q, Han P, Yin S, et al. Coatings, 2021, 11, 206. 52 Song K Q, Cong D L, He Q B, et al. Equipment Environmental Enginee-ring, 2019, 16(8), 65 (in Chinese). 宋凯强, 丛大龙, 何庆兵, 等. 装备环境工程, 2019, 16(8), 65. 53 Su J, Kang J, Yue W, et al. Materials Science and Technology, 2019, 35, 1908. 54 Xu Y X, Li W Y, Qu L Z, et al. Journal of Materials Science & Technology, 2021, 68, 93. 55 Yang K, Li W, Niu P, et al. Journal of Alloys and Compounds, 2018, 736, 115. 56 Qiu X, Wang J, Tang J, et al. Surface and Coatings Technology, 2018, 350, 391. 57 Zhang Z C, Liu F C, Han E H. Surface and Coatings Technology, 2020, 44, 39. 58 Huang G S, Fu W, Ma L, et al. Surface Engineering, 2019, 35, 233. 59 Geng M Z. Microstructure and properties of Ti(C, N) and WC-Ni based ceramic coatings deposited by electric spark deposition. Master's Thesis, Jilin university, China, 2020 (in Chinese). 耿铭章. 电火花沉积Ti(C, N)和WC-Ni基金属陶瓷涂层的组织及性能研究. 硕士学位论文, 吉林大学, 2020. 60 Paola L, Gilda R, Giuseppe C. Applied Sciences, 2017, 7, 22. 61 Zhang Y, Li L, Chang Q, et al. Surface Technology, 2021, 50(1), 150(in Chinese). 张勇, 李丽, 常青, 等. 表面技术, 2021, 50(1), 150. 62 Guo F, Su X J, Li P, et al. Journal of Welding, 2012, 33(4), 101(in Chinese). 郭锋, 苏勋家, 李平, 等. 焊接学报, 2012, 33(4), 101. 63 Wang W F, Chen J, Xu X T, et al. Journal of Materials Heat Treatment, 2013, 34(6), 120 (in Chinese). 王维夫, 陈军, 徐贤统, 等. 材料热处理学报, 2013, 34(6), 120. 64 Li X, Zhang C H, Shanhzad M, et al. Laser Technol, 2019, 114, 209. 65 Zhu Y, Liu X B, Liu Y F, et al. Surface & Coatings Technology, 2021, 424, 58. 66 Li Y X, Zhang P F, Bai P K, et al. Surface & Coatings Technology, 2018, 334, 88. 67 Ding H H, Mu X P, Zhu Y, et al. Wear, 2022, 5, 488. 68 Wang G, Liu X B, Liu Y F, et al. Materials Engineering, 2021, 11(1), 105 (in Chinese). 王港, 刘秀波, 刘一帆, 等. 材料工程, 2021, 11(1), 105. 69 Li X J, Zhang M, Wen S, et al. Surface & Coatings Technology, 2020, 44, 394. 70 Torres H, Slawik S, Gachot C, et al. Surface & Coatings Technology, 2018, 101, 337. 71 Jiang H Z, Li Z Y, Feng T, et al. Acta Metallurgica Sinica, 2021, 34, 495. 72 Kaseem M, Choe H C. Journal of Alloys and Compounds, 2021, 192, 109. 73 Xin W, Wang Y J, Wei S C, et al. Journal of Engineering Science, 2021, 43(3), 311(in Chinese). 辛蔚, 王玉江, 魏世丞, 等. 工程科学学报, 2021, 43(3), 311. 74 Yang W Y. Metallurgical Industry Management, 2020, 10(7), 65(in Chinese). 杨文岳. 冶金管理, 2020, 10(7), 65. |
|
|
|