Materials Reports 2020, Vol. 34 Issue (Z1): 400-407 |
METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Supported Noble Metal Catalysts in Catalytic Oxidation of Formaldehyde |
LI Shijie, HUANG Huijuan, WEN Shitao, MA Jianfeng, LIU Xing'e
|
International Centre for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, Beijing 100102,China |
|
|
Abstract Formaldehyde (HCHO) is one of the major pollutants in indoor air, and long-term exposure to the environment containing formaldehyde is harmful and may cause health problems. Therefore, it is necessary to eliminate HCHO from indoor air. Supported noble metal catalysts can completely oxidized HCHO into harmless H2O and CO2 at ambient temperature, which is regarded as the most promising strategy for the removal of HCHO. In this review, we summarize the recent advances in room-temperature HCHO oxidation over noble metal-based catalysts, which contain platinum (Pt), gold (Au), palladium (Pd), and silver (Ag). In particular, the factors affecting the removal efficiency of formaldehyde, the mechanisms for catalytic oxidation of HCHO over supported noble metal catalysts at room temperature and perspectives for future research in this area are also reviewed.
|
Published: 01 July 2020
|
|
Fund:This work was financially supported by the National Key Research and Development Program of China (2017YFD0600804). |
About author:: Shijie Li received his B.E. degree from Fujian Agriculture and Forestry University in 2019. Now, He is currently pursuing his M.E. at the International Centre for Bamboo and Rattan under the supervision of Prof. Xing'e Liu. His research has focused on biomass-based carbon material ; Xing'e Liu received her B.S., M.S., and Ph.D. degrees in wood science and technology from Anhui Agricultural University and Chinese Academy of Forestry in 1997, 2000, and 2005, respectively. In 2014, she became a professor at International Center for Bamboo and Rattan. She was a postdoctoral fellow at Chinese Academy of Forestry from 2006 to 2007. Her current research interests include the structure and properties of bamboo and rattan, and biomass-based carbon material. |
|
|
1 Salthammer T, Mentese S, Marutzky R.Chemical Reviews,2010,110(4),2536. 2 梁晓军,施健,赵萍,等.环境卫生学杂志,2017,7(2),170. 3 Wenger O S. Chemical Reviews,2013,113,3686. 4 王暾.化工设计通讯,2017,43(10),190. 5 Zhang T H, Li X P, Rao Y D, et al. Sustainable Cities and Society,2020,55,102050. 6 Zhao S Y, Su Y H, Liang H X. Journal of Environmental Health Science and Engineering,2019,17,141. 7 Li J, Zhong J C, Zhan T, et al. Environmental Health Science and Pollution Research,2019,26,36857. 8 Khamkeaw A, Phisalaphong M, Jongsomjit B,et al. Journal of Hazardous Materials,2020,384,121161. 9 Jin W T, Chen G D, Duan X Y. Applied Surface Science,2017,423,451. 10 WuG F, Zhao C H, Guo C Q, et al. Applied Surface Science,2018,428,954. 11 Zhu X Y, Lv M Q, Yang X D. Building and Environment,2018,136,177. 12 Yang Z J, Miao H C, Rui Z B, et al. Polymers,2019,11(2),276. 13 Zhu X B, Gao X, Qin R, et al. Applied Catalysis B: Environmental,2015,170,293. 14 Xu Z H, Yu J G, Low J X, et al. ACS Applied Materials Interface,2014,6,2111. 15 Hu X L, Li C Q, Sun Z M,et al. Building and Environment,2020,168,106481. 16 Chen M, Wang H H, Chen X Y, et al. Chemical Engineering Journal,2020,390,124481. 17 Ren L P, Yu Y, Yang Y,et al. Journal of Materials Science,2020,55,3167. 18 Wang J L, Li J, Zhang P Y,et al. Applied Catalysis B: Environmental,2018,224,863. 19 LiuP, Wei G L, He H P, et al. Applied Surface Science,2019,464,287. 20 Zhu D D, Hang Y, Cao J J,et al. Applied Catalysis B: Environmental,2019,258,117981. 21 黄慧娟,尚莉莉,马建锋,等.材料导报,2019,33(S2),521. 22 Guo Z, Lin C, Jiang C, et al. Applied Surface Science,2019,475,237. 23 Zhang C B, He H, Tanaka K. Catalysis Communications,2005,6,211. 24 Zhang C B, He H, Tanaka K. Applied Catalysis B: Environmental,2006,65,37. 25 Peng J X, Wang S D. Applied Catalysis B: Environmental,2007,73,282. 26 Huang H B, Leung D Y. Journal of Catalysis,2011,280(1),60. 27 An N H, Yu Q S, Liu G, et al. Journal of Hazardous Materials,2011,186,1392. 28 Yu X H, He J H, Wang D H, et al. The Journal of Physical Chemistry C,2012,116(1),851. 29 An N H, Zhang W L, Yuan X L, et al. Chemical Engineering Journal,2013,215,1. 30 Chen Y, He J H, Tian H, et al. Journal of Colloid and Interface Science,2014,428,1. 31 Nie L H, Zhang Y Q, Yu J G. Dalton Transactions,2014,43,12935. 32 Colussi S, Boaro M, Rogatis L, et al. Catalysis Today,2015,253,163. 33 Kwon D W, Seo P W, Kim G J, et al. Applied Catalysis B: Environmental,2015,163,436. 34 Chen H Y, Tang M N, Rui Z B, et al. Industrial & Engineering Chemistry Research,2015,54,8900. 35 Chen H Y, Tang M N, Rui Z B, et al. Catalysis Today,2016,264,23. 36 Yang X Q, Yu X L, Lin M Y, et al. Journal of Materials Chemistry A,2017,5,13799. 37 Schad E, Wisser F M, Franke M, et al. ChemNanoMat,2018,4,1000. 38 Xu Z H, Huang G, Yan Z X, et al. ACS Omega,2019,21998. 39 Wang Y Y, Jiang C J, Le Y, et al. Chemical Engineering Journal,2019,365,378. 40 Gao X Y, Guo Q, Zhou Y,et al. Journal of Chemistry, DOI:10.1155/2019/4582137. 41 Cui W Y, Liu L, Yang J J,et al. Journal of Dispersion Science and Technology, DOI:10.1080/01932691.2019.1637752 42 Chen J, Jiang M Z, Xu W J,et al. Applied Catalysis B: Environmental,2019,259,118013. 43 Bao W J, Chen H X, Wang H, et al. ACS Applied Nano Materials,2020,3(3),2614. 44 Ye J W, Zhou M H, Le Y,et al. Applied Catalysis B: Environmental, DOI:10.1016/j.apcatb.2020.118689. 45 Jia M L, Shen Y N, Li C Y. Catalysis Letters,2005,99,235. 46 Yang X Z, Shen Y N, Bao L L, et al. Reaction Kinetics and Catalysis Letters,2008,93,19. 47 Li C Y, Shen Y N, Jia M, et al. Catalysis Communications,2008,9,355. 48 Li H F, Liu X S, Guo C X, et al. Chinese Journal of Catalysis,2009,30,1001. 49 Liu B C, Liu Y, Li C Y, et al. Applied Catalysis B: Environmental,2012,127,47. 50 Chen B B, Zhu X B, Crocker M, et al. Catalysis Communications,2013,42,93. 51 Chen B B, Shi C A, Crocker M, et al. Applied Catalysis B: Environmental,2013,132,245. 52 Ikegami M, Matsumoto T, Kobayashi Y, et al. Applied Catalysis B: Environmental,2013,134,130. 53 Xu Q L, Lei W Y, Li X Y, et al. Environmental Science & Technology,2014,48,9702. 54 Chen B B, Zhu X B, Crocker M, et al. Applied Catalysis B: Environmental,2014,154,73. 55 Wang Y, Chen B B, Rocker M, et al. Catalysis Communications,2015,59,195. 56 Chen B B, Zhu X B, Wang Y D, et al. Chinese Journal of Catalysis,2016,37,1729. 57 Chen B B, Zhu X B, Wang Y D, et al. Catalysis Today,2017,281,512. 58 Xu J, Qu Z P, Wang Y, et al. Catalysis Today,2018,327,210. 59 Qu J F, Chen D Y, Li N J, et al. Small,2018,4,415. 60 Rochard G, Giraudon J M, Liotta L F, et al. Catalysis Science & Techno-logy,2019,9,3203. 61 Bu Y B, Chen Y F, Jiang G M, et al. Applied Catalysis B: Environmental,2020,206,118138. 62 Zhang C, He H. Catalysis Today,2007,126,345. 63 Alvarez-Galv N M C, Pawelec B, Delapea Oshea V A, et al. Applied Catalysis B: Environmental,2004,51(2),83. 64 Huang H B, Leung D Y C. ACS Catalysis,2011,1,348. 65 Park S J, Bae I, Nam I S, et al. Chemical Engineering Journal,2012,195,392. 66 Huang H B, Ye X G, Huang H L, et al. Chemical Engineering Journal,2013,230,73. 67 Wang Z Q, Pei J J, Zhang J S. Building and Environment,2013,65,49. 68 Zhang C B, Li Y B, Wang Y F, et al. Environmental Science & Technology,2014,48,5816. 69 Li G N, Li L. RSC Advances,2015,5,36428. 70 Li Y B, Zhang C B, He H, et al. Catalysis Science & Technology,2016,6,2289. 71 Li Y B, Zhang C B, Ma J Z, et al. Applied Catalysis B: Environmental,2017,217,560. 72 Li K, Ji J, Huang H B, et al. Chemosphere, DOI:10.1016/Chemosphere.2019.125762. 73 Tang X F, Chen J L, Li Y G, et al. Chemical Engineering Journal,2006,118,119. 74 Qu Z P, Shen S J, Chen D, et al. Journal of Molecular Catalysis A,2012,356,171. 75 Qu Z P, Chen D, Sun Y H, et al. Applied Catalysis A-General,2014,487,100. 76 Zhang J H, Li Y B, Zhang Y, et al. Scientific Reports,2015,5,10. 77 Li D D, Yang G L, Li P L, et al. Catalysis Today,2016,277,257. 78 Fang R M, He M, Huang H B,et al. Chemosphere,2018,213,235. 79 Ma L, Seo C Y, Chen X Y, et al. Chemical Engineering Journal,2018,350,419. 80 Lu S H, Chen C C, Wang X, et al. Catalysis Surveys from Asia,2018,22,63. 81 Zhang L, Xie Y Q, Jiang Y W, et al. Applied Catalysis B: Environmental, DOI:org/10.1016/j.apcatb.2019.118461 82 李国涵,丁建东,沈拥军,等.染整技术,2019,41(7),47. 83 王雪.银基负载型催化剂氧化甲醛的研究.硕士学位论文,西安石油大学,2019. 84 Yan Z X, Yang Z H, Xu Z H, et al. Journal of Colloid and Interface Science,2018,524,306. 85 李洪芳.负载型金催化剂上甲醛低温氧化性能研究.硕士学位论文,浙江师范大学,2011. 86 Bai B Y, Li J H. ACS Catalysis,2014,4,2753. 87 冯中举.纳米金催化剂催化氧化甲醛的研究.硕士学位论文,烟台大学,2016. 88 贾钧琳.纳米金催化剂低温催化甲醛氧化的研究.硕士学位论文,北京化工大学,2008. 89 杨振前.银/二氧化锰纳米材料的制备及其甲醛催化氧化性能研究.硕士学位论文,华南理工大学,2015. 90 Cui W Y, Xue D, Yuan X L, et al. Applied Surface Science,2017,411,105. 91 Zhang C, Liu F, Zhai Y, et al. Angewandte Chemie-International Edition,2012,51(38),9628. 92 申世近.后嫁接法制备Ag/SBA-15催化剂及其对甲醛催化性能研究.硕士学位论文,大连理工大学,2012. 93 Lin M Y, Yu X L, Yang X Q, et al. Catalysis Science & Technology,2017,7,1573. 94 Shi C, Chen B B, Li X S, et al. Chemical Engineering Journal,2012,202,729. 95 庞光龙.MnOx基催化剂上甲醛室温催化氧化反应的研究.硕士学位论文,北京理工大学,2015. 96 陈丹.银基催化剂上甲醛吸-脱附及催化氧化性能研究.博士学位论文,大连理工大学,2014. |
|
|
|