METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Thermomechanical Treatment Improves the Mechanical Properties of Cr47Ni33Co10Fe10 Multi-component Eutectic Alloys |
XUE Zan1, JIN Xi1,*, MAO Zhouzhu2, LAN Aidong1, WANG Dayu1, QIAO Junwei1,3
|
1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2 Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China 3 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract The disordered face-centered cubic (FCC)+disordered body-centered cubic (BCC) multi-component eutectic alloy (MCEA) Cr47Ni33Co10Fe10 has important engineering application value. In this work, we adopt a thermal mechanical treatment strategy of reducing alloy thickness by 90% through multiple passes of cold rolling and annealing at 800 ℃ for 1 hour to improve the mechanical properties of the alloy. The yield strength (σ0.2) of Cr47Ni33Co10Fe10 after thermomechanical treatment is 1 230 MPa, and the tensile fracture strain (ε) is 13%. The yield strength has increased by 864 MPa compared to as cast alloys, which is more than three times that of the as-cast alloy, and there is almost no loss of plasticity. The matching of high strength and high plasticity comes from the substitution of the initial lamellar structure by the duplex ultrafine equiaxed grains. The work provides a feasible heat treatment process for improving the mechanical property of dual-phase eutectic high-entropy alloys.
|
Published: 10 February 2025
Online: 2025-02-05
|
|
|
|
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring:A, 2004, 375, 213. 3 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1. 4 Kozak R, Sologubenko A, Steurer W. Zeitschrift für Kristallographie-Crystalline Materials, 2015, 230(1), 55. 5 Pickering E J, Jones N G. International Materials Reviews, 2016, 61(3), 183. 6 Wang M, Cui H, Zhao Y, et al. Materials & Design, 2019, 180, 107893. 7 Wang M, Lu Y, Zhang G, et al. Vacuum, 2021, 184, 109905. 8 Fu Y, Li J, Luo H, et al. Journal of Materials Science & Technology, 2021, 80, 217. 9 Senkov O N, Gorsse S, Miracle D B. Acta Materialia, 2019, 175, 394. 10 Fan L, Yang T, Zhao Y, et al. Nature Communications, 2020, 11(1), 6240. 11 Yeh J W. Jom, 2013, 65, 1759. 12 Yan Y W, Yu Z H, Gao W. Materials Reports, 2022, 36(S1), 333(in Chinese). 阎亚雯, 余竹焕, 高炜, 等. 材料导报, 2022, 36(S1), 333. 13 Lu Y, Dong Y, Guo S, et al. Scientific Reports, 2014, 4(1), 6200. 14 Jin X, Bi J, Zhang L, et al. Journal of Alloys and Compounds, 2019, 770, 655. 15 Lu Y, Gao X, Jiang L, et al. Acta Materialia, 2017, 124, 143. 16 Jin X, Zhou Y, Zhang L, et al. Materials Letters, 2018, 216, 144. 17 Jin X, Xue Z, Mao Z, et al. Materials Science and Engineering: A, 2023, 877, 145136. 18 Yin B, Maresca F, Curtin W A. Acta Materialia, 2020, 188, 486. 19 Tu Y W, Zhu L H, Ke Z G, Materials Reports, 2021, 35(20), 20113(in Chinese). 涂有旺, 朱丽慧, 柯志刚, 等. 材料导报, 2021, 35(20), 20113. 20 Li H C, Wang J, Yuan R H, et al. Materials Reports, 2021, 35(17), 17010(in Chinese). 李洪超, 王军, 袁睿豪, 等. 材料导报, 2021, 35(17), 17010. 21 Zhou Z Z, Wang Z J, Jiao S S, et al. Materials Reports, 2023, 37(16), 217(in Chinese). 周珍珍, 汪佐瑾, 焦世舜, 等. 材料导报, 2023, 37(16), 217. 22 Wu Q, He F, Li J, et al. Nature Communications, 2022, 13(1), 4697. 23 Shi P, Ren W, Zheng T, et al. Nature Communications, 2019, 10(1), 489. 24 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016, 4(3), 174. 25 Wani I S, Bhattacharjee T, Sheikh S, et al. Intermetallics, 2017, 84, 42. 26 Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Journal of Alloys and Compounds, 2014, 587, 544. 27 Ahmed M Z, Bhattacharjee P P. ISIJ International, 2014, 54(12), 2844. 28 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Science and Engineering: A, 2016, 675, 99. 29 Ahmed M Z, Bhattacharjee P P. ISIJ International, 2014, 54(12), 2844. 30 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena, Elsevier, NL, 2012, pp. 125. 31 Tripathy B, Malladi S R K, Bhattacharjee P P. Materials Science and Engineering: A, 2022, 831, 142190. 32 Kamikawa N, Huang X, Tsuji N, et al. Acta Materialia, 2009, 57(14), 4198. 33 An X H, Wu S D, Zhang Z F, et al. Scripta Materialia, 2012, 66(5), 227. 34 Li Z, Fu L, Fu B, et al. Materials Letters, 2013, 96, 1. 35 Saha R, Ueji R, Tsuji N. Scripta Materialia, 2013, 68(10), 813. 36 Ma E, Zhu T. Materials Today, 2017, 20(6), 323. 37 Shi P, Zhong Y, Li Y, et al. Materials Today, 2020, 41, 62. 38 Wang Y Q, Zhu G H, Chen Q W, et al. Materials Reports, 2018, 32(19), 3414(in Chinese). 王永强, 朱国辉, 陈其伟, 等. 材料导报, 2018, 32(19), 3414. 39 Wu X, Zhu Y. Materials Research Letters, 2017, 5(8), 527. 40 Bhattacharjee T, Wani I S, Sheikh S, et al. Scientific Reports, 2018, 8(1), 3276. 41 Fu P, Su H, Li Z, et al. Journal of Alloys and Compounds, 2022, 921, 166141. 42 Yang H, Li J, Guo T, et al. Metals and Materials International, 2019, 25, 1145. 43 Li H, Wang J, Yang H, et al. Materials Characterization, 2022, 191, 112156. 44 Xiong T, Zheng S, Pang J, et al. Scripta Materialia, 2020, 186, 336. 45 Zhang L, Amar A, Zhang M, et al. Science China Materials, 2023, 66(11), 4197. 46 Guo T, Li J, Wang J, et al. Materials Science and Engineering: A, 2018, 729, 141. 47 Peng P, Feng X, Li S, et al. Journal of Alloys and Compounds, 2023, 939, 168843. 48 Shen Q, Kong X, Chen X. Materials Science and Engineering: A, 2021, 815, 141257. 49 Shabani A, Toroghinejad M R. Materials Characterization, 2019, 154, 253. |
|
|
|