INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Modified Regulation of Coal-derived Porous Carbon for Energy Storage Applications |
DONG Duo1,*, XIAO Yi2, XING Jiaying3, YUAN Qixin4
|
1 China Nuclear Power Engineering Co., Ltd., Beijing 100840, China 2 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China 3 School of Environment, Tsinghua University, Beijing 100084, China 4 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract The large-scale application of renewable energy is the driving force to support the sustainable development of the world. However, the random and intermittent working mode results in low energy density and high dispersion of renewable energy. The collaborative mode of combining power generation and energy storage is helpful to achieve safe and stable output of renewable energy. Supercapacitors, rechargeable batteries, fuel cells and solar cells can be used as advanced energy storage equipment for renewable energy. However, the electrode materials determine the comprehensive performance of the energy storage equipment. As a high-quality carbon source, coal is rich in reserve, high in carbon content and low in price. Using it as precursor to prepare functional coal-derived porous carbon electrode materials for energy storage is expected to solve the problem of high cost and low scale production of energy storage equipment. This review focuses on the latest research progress of coal-derived porous carbon materials, with special attention to synthesis methods, regulatory strategies and structural optimization. The efficient application of coal-derived porous carbon in the field of energy storage is discussed, and further research challenges are proposed.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:National Key Research and Development Program of China (2023YFC3904102). |
|
|
1 Zhang Y S, Dong D, Xiao Y, et al. Chinese Science Bulletin, 2021, 66(34), 4466 (in Chinese). 张永生, 董舵, 肖逸, 等. 科学通报, 2021, 66(34), 4466. 2 Dong D, Zhang Y S, Shan M Y, et al. Journal of Cleaner Production, 2022, 348, 131351. 3 Tong D, Zhang Q, Liu F, et al. Environmental Science & Technology, 2018, 52, 12905. 4 Wang W J, Dong Z Y. Energy, 2021, 225, 120246. 5 Li M Q, Virguez E, Shan R, et al. Applied Energy, 2022, 306, 117996. 6 Liu J Z, Wang Q H, Song Z Q, et al. Engineering, 2021, 7, 1611. 7 Maddukuri S, Malka D, Chae Munseok S, et al. Electrochimica Acta, 2020, 354, 136771. 8 Chen Z H, An X H, Dai L M, et al. Nano Energy, 2020, 73, 104762. 9 Liu Z Y, Navik R, Tan H J, et al. The Journal of Supercritical Fluids, 2022, 188, 105672. 10 Long M Q, Tang K K, Xiao J, et al. Materials Today Sustainability, 2022, 19, 100163. 11 Peng Y, Xu J, Xu J M, et al. Advances in Colloid and Interface Science, 2022, 307, 102732. 12 Yuan S, Duan X, Liu J Q, et al. Energy Storage Materials, 2021, 42, 317. 13 Chauhan Narendra Pal S, Jadoun S, Rathore Bharatraj S, et al. Journal of Energy Storage, 2021, 43, 103218. 14 Dong D, Zhang Y S, Xiao Y, et al. Journal of Colloid and Interface Science, 2020, 580, 77. 15 Bora M, Bhattacharjya D, Saikia Binoy K. Energy & Fuels, 2021, 35, 18285. 16 Zhang Y T, Fu S Q, Cai J T, et al. Carbon Techniques, 2016, 6(35), 12 (in Chinese). 张亚婷, 付世启, 蔡江涛, 等. 炭素技术, 2016, 6(35), 12. 17 Yao Y L, Ma L L, Wang J X, et al. Chemical Industry and Engineering Progress, 2022, 41(6), 3077 (in Chinese). 姚亚丽, 马利利, 王嘉鑫, 等. 化工进展, 2022, 41(6), 3077. 18 Dong D, Zhang Y S, Wang T, et al. Materials Chemistry and Physics, 2020 252, 123381. 19 Zhang Y, Yang Q, Shao Y, et al. Journal of China Coal Society, 2023, 48(9), 3522 (in Chinese). 张永, 杨琪, 邵渊, 等. 煤炭学报, 2023, 48(9), 3522. 20 Roy E, Nagar A, Sharma A, et al. Journal of Energy Storage, 2021, 39, 102606. 21 Hasan A M M, Hasan Md. A, Reza A, et al. Materials Today Communications, 2021, 29, 102732. 22 Bo C H, Jiang W J, Wang Y G, et al. Chinese Journal of Applied Chemistry, 2021, 38(7), 767 (in Chinese). 薄纯辉, 姜维佳, 王玉高, 等. 应用化学, 2021, 38(7), 767. 23 Ye R Q, Xiang C S, Lin J, et al. Nature Communications, 2013, 4, 1. 24 Ye R Q, Peng Z W, Metzger A, et al. ACS Applied Materials & Interfaces, 2015, 7, 7041. 25 Qin F W, Li Q Q, Tang T T, et al. Fuel, 2022, 322, 124216. 26 Zhang Y T, Li K K, Ren S Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 9793. 27 Iijima S. Nature, 1991, 354, 56. 28 Wu L, Liu J, Reddy B. R, et al. Fuel Processing Technology, 2022, 229, 107171. 29 Chen H Y, Zeng S, Chen M H, et al. Carbon, 2015, 92, 271. 30 Zhou X X, Wang Y, Gong C C, et al. Chemical Engineering Journal, 2020, 402, 126189. 31 Chen H Y, Li M X, Li C P, et al. Chinese Chemical Letters, 2022, 33, 141. 32 Guo M X, Guo J X, Jia D Z, et al. Journal of Materials Chemistry A, 2015, 3, 21178. 33 Tong F L, Jia W, Pan Y L, et al. RSC Advances, 2019, 9, 6184. 34 Wang T T, He X, Gong W B, et al. Fuel, 2020, 278, 117985. 35 Zhao H Y, Wang L X, Jia D Z, et al. Journal of Materials Chemistry A, 2014, 2, 9338. 36 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2014, 306, 666. 37 Khan S, Ul-Islam M, Ahmad Mohammed W, et al. Energy & Fuels, 2022, 36, 3420. 38 He Y F, Zhuang X D, Lei C J, et al. Nano Today, 2019, 24, 103. 39 Islam T, Hasan M. Mahedi, Shah Syed S, et al. Journal of Energy Storage, 2020, 32, 101908. 40 Lei J, Wang K, Deng B W, et al. Journal of Alloys and Compounds, 2022, 914, 165359. 41 Vijapur Santosh H, Wang D, Ingram David C, et al. Materials Today Communications, 2017, 11, 147. 42 Sun W, Sun Q, Lu R F, et al. Journal of Alloys and Compounds, 2021, 889, 161678. 43 Leng C Y, Zhao Z B, Song Y Z, et al. Nano-Micro Letters, 2021, 13, 1. 44 Wei F, He X J, Ma L B, et al. Nano-Micro Letters, 2020, 12, 1. 45 Luo S Y, Li J Z, Zhang X L, et al. Journal of Analytical and Applied Pyrolysis, 2018, 135, 10. 46 Jiang Y C, He Z F, Du Y Y, et al. Journal of Colloid and Interface Science, 2021, 602, 721. 47 Guo M X, Guo J X, Tong F L, et al. RSC Advances, 2017, 7, 45363. 48 Liu C, Zeng H J, Yu K, et al. Carbon, 2022, 194, 176. 49 Li L, Wei X Y, Shao C W, et al. Fuel, 2023, 331, 125658. 50 Sun F, Wang K F, Wang L J, et al. Carbon, 2019, 155, 166. 51 Gao S S, Tang Y K, Wang L, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 3255. 52 Yang N N, Ji L, Fu H C, et al. Chinese Chemical Letters, 2022, 33, 3961. 53 Han G X, Jia J B, Liu Q R, et al. Carbon, 2022, 186, 380. 54 Ma W P, Xiao R L, Wang X X, et al. Journal of Electroanalytical Che-mistry, 2022, 917, 116417. 55 Yang X X, Zhao S, Zhang Z Z, et al. Journal of Colloid and Interface Science, 2022, 614, 298. 56 Nabais J M V, Nunes P, Carrott P J M, et al. Fuel Processing Technology, 2008, 89, 262. 57 Gao Y, Yue Q Y, Gao B Y, et al. Science of the Total Environment, 2020, 746, 141094. 58 Bergius Dr. F. Journal of the Indian Chemical Society, 1913, 32, 462. 59 Zhang W, Cheng R R, Bi H H, et al. New Carbon Materials, 2021, 36, 69. 60 Qian W X, Li X, Zhu X Q, et al. RSC Advances, 2020, 10, 8172. 61 Kumar N S, Grekov D, Pré P, et al. Renewable and Sustainable Energy Reviews, 2020, 124, 109743. 62 Liu D D, Wu Z S, Ge X Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 563. 63 Dong D, Zhang Y S, Xiao Y, et al. Fuel, 2022, 309, 122168. 64 Teng Z C, Han K H, Li J X, et al. Ultrasonics Sonochemistry, 2020, 60, 104756. 65 Bora M, Benoy Santhi M, Tamuly J, et al. Journal of Environmental Chemical Engineering, 2021, 9, 104986. 66 Dong D, Zhang Y S, Xiao Y, et al. Journal of Power Sources, 2021, 503, 230049. 67 Driscoll Laura L, Driscoll Elizabeth H, Dong B, et al. Energy & Environmental Science, 2023. 16, 5196. 68 He X J, Li X J, Ma H, et al. Journal of Power Sources, 2017, 340, 183. 69 He X J, Zhang H B, Zhang H, et al. Journal of Materials Chemistry A, 2014, 2, 19633. 70 Li X, Du X Y, Li Y L, et al. Journal of Materials Science, 2022, 57, 9357. 71 Li X, Tian X D, Yang T, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 5742. 72 Wang G Y, Wang X H, Sun J F, et al. Rare Metals, 2022, 41, 3706. 73 Zhang F H, Zhou T Y, Liu Y J, et al. Scientific Reports, 2015, 5, 11152. 74 Wu L, Cai Y M, Wang S Z, et al. International Journal of Hydrogen Energy, 2021, 46, 2432. 75 Dou S, Tao L, Wang R L, et al. Advanced Materials, 2018, 30, 1705850. 76 Rooze J, Rebrov E V, Schouten J C, et al. Ultrasonics Sonochemistry, 2013, 20, 1. 77 Leng C Y, Sun K, Li J H, et al. Journal of Alloys and Compounds, 2017, 714, 443. 78 Dong D, Zhang Y S, Xiao Y, et al. Applied Surface Science, 2020, 529, 147074. 79 Lyu H H, Gao B, He F, et al. ACS Sustainable Chemistry & Engineering, 2017, 5, 9568. 80 Munoz-Batista M J, Rodriguez-Padron D, Puente-Santiago A R, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 9530. 81 Dong D, Xiao Y, Xing J Y. Journal of Cleaner Production, 2023, 428, 139474. 82 Song X Y, Jiang R Y, Zhang L. Applied Surface Science, 2022, 583, 152549. 83 Jiang Y C, He Z F, Cui X, et al. ACS Applied Energy Materials, 2022, 5, 15199. 84 Yin Y F, Liang D C, Liu D Q, et al. RSC Advances, 2022, 12, 3062. 85 Gan X M, Yuan R L, Zhu J Y, et al. Carbon, 2023, 201, 381. 86 Lv S P, Wu X Y, Lv Y, et al. Energy & Fuels, 2023, 37, 12427. 87 Zhang Y T, Zhang K B, Jia K L, et al. Fuel, 2019, 241, 646. 88 Xing B L, Zeng H H, Huang G X, et al. Journal of Alloys and Compounds, 2019, 779, 202. 89 Gao X M, Shen Z M, Chang G B, et al. Diamond & Related Materials, 2022, 130, 109481. 90 Park Gi D, Jung Dae S, Lee J K, et al. Chemical Engineering Journal, 2019, 373, 382. 91 Lu Z J, Yao S D, Dong Y Z, et al. Journal of Energy Chemistry, 2021, 56, 87. 92 Zhang H J, Cai C L, Geng J, et al. Journal of Electroanalytical Chemistry, 2020, 871, 114231. 93 Yang J Y, Zhou X F, Yue F, et al. Journal of Solid State Electrochemistry, 2018, 22, 2553. 94 Wang C L, Meng F N, Wang T H, et al. Carbon, 2014, 67, 465. 95 Dong D, Xiao Y. Chemical Engineering Journal, 2023, 470, 144441. 96 Pohlmann S, Lobato B, Centeno Teresa A, et al. Physical Chemistry Chemical Physics, 2013, 15, 17287. 97 Bora M, Tamuly J, Benoy Santhi M, et al. Fuel, 2022, 329, 125385. 98 Tian X D, Chen Z C, Hou J, et al. Journal of Cleaner Production, 2022, 363, 132524. 99 Wang Y S, Yang J, Liu S Y, et al. Carbon, 2023, 201, 624. 100 Luo L, Lan Y L, Zhang Q Q, et al. Journal of Energy Storage, 2022, 55, 105839. 101 Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R. Ceramics International, 2021, 47, 22269. 102 Yan S X, Wang Q, Luo S H, et al. Journal of Power Sources, 2022, 461, 228151. 103 Wang R, Lee J M, Rish Salman K, et al. Fuel Processing Technology, 2022, 238, 107498. 104 Sun F, Wu D Y, Gao J H, et al. Journal of Power Sources, 2020, 477, 228759. 105 Feng B, Bhatia Suresh K, Barry John C. Carbon, 2002, 40, 481. 106 Wang L J, Sun F, Gao J H, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 588. 107 Wang H, Sun F, Qu Z B, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 18554. 108 Xiao N, Zhang X Y, Liu C, et al. Carbon, 2019, 147, 574. 109 Ju Myung J, Jeon I Y, Lim K, et al. Energy & Environmental Science, 2014, 7, 1044. 110 Ren R, Zhou X H, Cao C X, et al. Synthetic Materials Aging and Application, 2022, 51(5), 130 (in Chinese). 任蕊, 周晓慧, 曹晨茜, 等. 合成材料老化与应用, 2022, 51(5), 130. 111 Zhang S, Zhu J Y, Qing Y, et al. Advanced Functional Materials, 2018, 28, 1805898. 112 Gao Y F, Zhang Y M, Huang H L, et al. Journal of Electroanalytical Chemistry, 2022, 921, 116678. 113 Liu B L, Wang X L, Chen Y Y, et al. Journal of Energy Storage, 2023, 68, 107826. 114 Li X, Li Y L, Tian X D, et al. Journal of Alloys and Compounds, 2022, 903, 163919. 115 Liu H C, Shi W H, Song H, et al. ACS Applied Energy Materials, 2022, 6, 222. 116 Yang Y K, Zuo P P, Qu S J. Fuel, 2022, 311, 122514. 117 Yang Z H, Cao J P, Zhuang Q Q, et al. Fuel Processing Technology, 2023, 243, 107665. 118 Liu H W, Wang Y Z, Lv L, et al. Energy, 2023, 269, 126707. 119 Benoy S M, Bhattacharjya D, Bora M, et al. ACS Applied Electronic Materials, 2022, 4, 6322. 120 Han G X, Jia J B, Yao Y H, et al. Journal of Energy Storage, 2023, 68, 107612. 121 Liao Y Y, Zhou F, Zhang Y X, et al. Energy Storage Science and Technology, 2024, 13(1), 130(in Chinese). 廖雅贇, 周峰, 张颖曦, 等. 储能科学与技术, 2024, 13(1), 130. 122 Wang K F, Sun F, Wang H, et al. Advanced Functional Materials, 2022, 32, 2203725. 123 Wang R, Rish S K, Wang J L, et al. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105489. 124 Prakash S, Kumar R, Gupta A, et al. Materials Chemistry and Physics, 2022, 281, 125836. 125 Yin R L, Wang K, Han B B, et al. Coatings, 2021, 11, 948. 126 Li D P, Ren X H, Ai Q, et al. Advanced Energy Materials, 2018, 8, 1802386. 127 Wang Y W, Xiao N, Wang Z Y, et al. Carbon, 2018, 135, 187. 128 Han L, Zhu X, Yang F, et al. Powder Technology, 2021, 382, 40. 129 Sun F, Wang H, Qu Z B, et al. Advanced Energy Materials, 2021, 11, 2002981. 130 Jin C X, Xu G J, Liu L K, et al. Materials Reports, 2017,31(11), 10 (in Chinese). 金晨鑫, 徐国军, 刘烈凯, 等. 材料导报, 2017, 31(11), 10. 131 Shi J C, An Y L, Yan H L, et al. Liaoning Chemical Industry, 2023, 52(11), 1565 (in Chinese). 史锦程, 安玉良, 闫杭亮, 等. 辽宁化工, 2023, 52(11), 1565. 132 Xing B L, Zhang C T, Liu Q R, et al. Journal of Alloys and Compounds, 2019, 795, 91. 133 Xing B L, Zhang C T, Cao Y J, et al. Fuel Processing Technology, 2018, 172, 162. 134 Wei S W, Deng X Y, Li W, et al. Chemical Engineering Journal, 2023, 455, 140540. 135 Shen H T, Zhao H Q, Kang M M, et al. ChemElectroChem, 2019, 6, 4541. 136 Zhuang Z H, Cui Y L, Zhu H G, et al. Journal of The Electrochemical Society, 2018, 165, A2225. 137 Ma X Q, Xiao N, Xiao J, et al. Carbon, 2021, 179, 33. 138 Guo W J, Geng C, Sun Z F, et al. Journal of Colloid and Interface Science, 2022, 623, 1075. 139 Liu G Y, Zhang Y T, Zhou A N, et al. Energy & Fuels, 2021, 35, 6835. 140 Ali A, Bashir Farrukh S, Raza R, et al. International Journal of Hydrogen Energy, 2018, 43, 12900. 141 Xie H P, Zhai S, Chen B, et al. Applied Energy, 2020, 260, 114197. 142 Kuang H H, Cheng Y, Cui C Q, et al. Journal of Nanoscience and Nanotechnology, 2020, 20, 2736. 143 Chen X X, Wang J, Huang X N, et al. Catalysis Science & Technology, 2018, 8, 1104. 144 Luo M S, Shao C K, Song H Q, et al. Battery Bimonthly, 2023, 53(3), 328 (in Chinese). 罗明生, 邵长科, 宋焕巧, 等. 电池, 2023, 53(3), 328. 145 Dai L M, Xue Y H, Qu L T, et al. Chemical Reviews, 2015, 115, 4823. 146 Negro E, Videla Alessandro H. A. M, Baglio V, et al. Applied Catalysis B: Environmental, 2015, 166-167, 75. 147 Li Y B, Zhang H M, Wang Y, et al. Energy & Environmental Science, 2014, 7, 3720. 148 Du R, Zhang N, Zhu J H, et al. Small, 2015, 11, 3903. 149 Choi Chang H, Lee Seung Y, Park Sung H, et al. Applied Catalysis B: Environmental, 2011, 103, 362. 150 Chao S J, Geng M J. International Journal of Hydrogen Energy, 2016, 41, 12995. 151 Shamsunnahar Shammi M, Nagai M. Fuel, 2014, 126, 134. 152 Jiao Y, Zhao J H, An W T, et al. Journal of Power Sources, 2015, 288, 106. 153 Jiao Y, Tian W J, Chen H L, et al. Applied Energy, 2015, 141, 200. 154 Qi J W, Jin B L, Liu W Q, et al. Fuel, 2021, 285, 119163. 155 Dong F, Liu C, Wu M J, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 8587. 156 Liu H M, Cheng J X, Lu Z J, et al. Electrochimica Acta, 2019, 312, 22. 157 Geng J, Zhang H J, Yao S W, et al. RSC Advances, 2019, 9, 24770. 158 Jing H Y, Shi Y T, Qiu W W, et al. Journal of Power Sources, 2019, 414, 495. 159 Meng F N, Gao L G, Yan Y L, et al. Carbon, 2019, 145, 290. 160 Jing H Y, Shi Y T, Song X D, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 10484. 161 Mao W, Wei L G, Zhao L S, et al. Journal of Applied Electrochemistry, 2023, 53, 833. 162 Hu Q X, Yang X Y, Qi Y, et al. Journal of Energy Chemistry, 2023, 79, 242. |
|
|
|