POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Metal Halide Perovskite Nanocrystalline/Polymer Composites |
SUN Yuanjie1, LI Zhigang1,2, WANG Yi1, TIAN Bo1, LI Jinfeng1, ZHANG Nan1,2, ZHAO Junfeng2, ZHANG Jianwei1, LI Tuo1, ZHAO Hongtao1,2,*
|
1 Heilongjiang Institute of Atomic Energy, Harbin 150081, China 2 School of Nuclear Science and Technology, Harbin Engineering University, Harbin 150006, China |
|
|
Abstract Metal halide perovskite nanocrystals have attracted extensive research attention due to their unique photoelectric properties, showing great application prospects in photovoltaic and optoelectronic fields. However, due to the ionic crystal properties of perovskite nanocrystals, they are unstable in water, heat and other environments, which limits their practical application. Metal halide perovskite nanocrystals can be combined with polymers to form nanocomposites with many superior properties. Polymer matrix can endow composites with stability, stretchability and solution processability, while nanocrystals can maintain their size, shape and composition-related photoelectric properties. Therefore, these nanocomposites have great potential in the fields of next-generation displays, lighting, sensing, biomedical technology and energy conversion. This paper summarizes the latest research progress of metal halide perovskite nanocrystals/polymer nanocomposites. Firstly, various synthesis strategies for preparing perovskite nanocrystals/polymer composites are discussed. Secondly, the applications of metal halide perovskite nanocrystals/polymer composites in light-emitting diodes, lasers and scintillators are discussed. Finally, the future research directions and challenges in this field are proposed.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:Natural Science Foundation of Heilongjiang (LH2022A024), Natural Science Foundation of Heilongjiang Academy of Sciences (YZ2022YZN01), the Fundamental Research Funds for Provincial Institute of Heilongjiang (CZKYF2022-1-C032), the Applied Technology R & D Program of Heilongjiang(GA20C011), Open Foundation of Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education. |
|
|
1 Xing G, Mathews N, Lim S S, et al. Nature Materials, 2014, 13(5), 476. 2 Zhou Y, Zhao Y. Energy & Environmental Science, 2019, 12(5), 1495. 3 Wei S, Yang Y, Kang X, et al. Chemical Communications (Camb), 2016, 52(45), 7265. 4 Wang S, Zhang Z, Tang Z, et al. Nano Energy, 2021, 82, 105712. 5 Tan Z K, Moghaddam R S, Lai M L, et al. Nature Nanotechnology, 2014, 9(9), 687. 6 Song J, Li J, Li X, et al. Advanced Materials, 2015, 27(44), 7162. 7 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050. 8 Xiong G, Jin Y, Deng K, et al. Journal of Materials Chemistry C, 2022, 10(34), 12316. 9 Lei L, Dong Q, Gundogdu K, et al. Advanced Functional Materials, 2021, 31(16), 2010144. 10 Qiu L, He S, Jiang Y, et al. Journal of Materials Chemistry A, 2021, 9(40), 22759. 11 Zhang D, Zhu Y, Zhang Q, et al. Nano Letters, 2022, 22(7), 3062. 12 Chen Q, Wu J, Ou X, et al. Nature, 2018, 561(7721), 88. 13 Su W, Yuan F. Matter, 2022, 5(8), 2450. 14 Zhang C, Chen J, Turyanska L, et al. Advanced Functional Materials, 2023, 33(3), 2211466. 15 Wu X, Guo Z, Zhu S, et al. Advanced Science, 2022, 9(17), 2200831. 16 Dey A, Ye J, De A, et al. ACS Nano, 2021, 15(7), 10775. 17 Chen J K, Zhang B B, Liu Q, et al. ACS Materials Letters, 2021, 3(11), 1541. 18 Huang H, Raith J, Kershaw S V, et al. Nature Communications, 2017, 8(1), 996. 19 O’Neill S W, Krauss T D. Journal of the American Chemical Society, 2022, 144(14), 6251. 20 Cha J, Kim M K, Lee W, et al. Chemical Engineering Journal, 2023, 451, 138920. 21 Hubley A, Bensalah-Ledoux A, Baguenard B, et al. Advanced Optical Materials, 2022, 10(19), 2200394. 22 Wang J X, Wang X, Yin J, et al. ACS Energy Letters, 2021, 7(1), 10. 23 Berhe T A, Su W N, Chen C H, et al. Energy & Environmental Science, 2016, 9(2), 323. 24 Zhang F, Zhong H, Chen C, et al. ACS Nano, 2015, 9(4), 4533. 25 Zhang J, Yang L, Zhong Y, et al. Physical Chemistry Chemical Physics, 2019, 21(21), 11175. 26 Yang D, Li X, Zeng H. Advanced Materials Interfaces, 2018, 5(8), 1701662. 27 Bella F, Griffini G, Correa-Baena J P, et al. Science, 2016, 354(6309), 203. 28 Yang M, Wang Q, Tong Y, et al. Applied Surface Science, 2022, 604, 154529. 29 Shankar H, Yu W W, Kang Y, et al. Scientific Reports, 2022, 12(1), 7848. 30 Chen T, Huang M, Ye Z, et al. Nano Research, 2021, 14, 1397. 31 Fan Y, Dong X, Guo Y, et al. Analytical Chemistry, 2022, 94(32), 11360. 32 Wang B, Peng J, Yang X, et al. Laser & Photonics Reviews, 2022, 16(7), 2100736. 33 Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nano Letters, 2015, 15(6), 3692. 34 Wei S, Zhu H, Zhang J, et al. Journal of Alloys and Compounds, 2019, 789, 209. 35 Xin Y, Zhao H, Zhang J. ACS Applied Materials & Interfaces, 2018, 10(5), 4971. 36 Park J, Jang H M, Kim S, et al. Trends in Chemistry, 2020, 2(9), 837. 37 Kazes M, Udayabhaskararao T, Dey S, et al. Accounts of Chemical Research, 2021, 54(6), 1409. 38 Zhou J, Fang F, Chen W, et al. Journal of Materials Chemistry C, 2021, 9(41), 14740. 39 Jin X, Ma K, Gao H. Journal of the American Chemical Society, 2022, 144(44), 20411. 40 Zhou Q, Bai Z, Lu W G, et al. Advanced Materials, 2016, 28(41), 9163. 41 Chen J, Huang X, Xu Z, et al. ACS Applied Materials & Interfaces, 2022, 14(29), 33703. 42 Liang Z B, Chen X, Liao X J, et al. Journal of Materials Chemistry C, 2022, 10(35), 12644. 43 Wang Y, He J, Chen H, et al. Advanced Materials, 2016, 28(48), 10710. 44 Erman B, Flory P. Macromolecules, 1986, 19(9), 2342. 45 He J, He Z, Towers A, et al. Nanoscale Advances, 2020, 2(5), 2034. 46 Wang Z, Fu R, Li F, et al. Advanced Functional Materials, 2021, 31(22), 2010009. 47 Dirin D N, Protesescu L, Trummer D, et al. Nano Letters, 2016, 16(9), 5866. 48 Cha W, Kim H J, Lee S, et al. Journal of Materials Chemistry C, 2017, 5(27), 6667. 49 Ma K, Du X Y, Zhang Y W, et al. Journal of Materials Chemistry C, 2017, 5(36), 9398. 50 Tang X, Wen X, Yang F. Nanoscale, 2022, 14(47), 17641. 51 Dong T, Zhao J, Li G, et al. ACS Applied Materials & Interfaces, 2021, 13(33), 39748. 52 Geng Y, Guo J, Ling S D, et al. Science China Materials, 2022, 65(10), 2746. 53 Zhang Z, Liu Y, Geng C, et al. Nanoscale, 2019, 11(40), 18790. 54 Hintermayr V A, Lampe C, Löw M, et al. Nano Letters, 2019, 19(8), 4928. 55 Liu Y, Chen T, Jin Z, et al. Nature Communications, 2022, 13(1), 1338. 56 Xu L, Meng Y, Xu C, et al. RSC Advances, 2018, 8(64), 36910. 57 Li D, Liu Y, Shi S, et al. Journal of Materials Chemistry C, 2021, 9(8), 2873. 58 Li X, Wen Z, Ding S, et al. Advanced Optical Materials, 2020, 8(13), 2000232. 59 Xue Q, Lampe C, Naujoks T, et al. Advanced Optical Materials, 2022, 10(14), 2102791. 60 Dujardin C, Auffray E, Bourret-Courchesne E, et al. IEEE Transactions on Nuclear Science, 2018, 65(8), 1977. 61 Li M, Wang Y, Yang L, et al. Angewandte Chemie, 2022, 134(37), e202208440. 62 Li H, Zhang Y, Zhou M, et al. ACS Energy Letters, 2022, 7(9), 2876. 63 Yu D, Wang P, Cao F, et al. Nature Communications, 2020, 11(1), 3395. 64 Zhang Y, Sun R, Ou X, et al. ACS Nano, 2019, 13(2), 2520. 65 Yang B, Yin L, Niu G, et al. Advanced Materials, 2019, 31(44), 1904711. 66 Li Y, Li Q L, Li Y, et al. Chemical Engineering Journal, 2023, 452, 139132. 67 Wang B, Li P, Zhou Y, et al. ACS Applied Nano Materials, 2022, 5(7), 9792. |
|
|
|