POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Organic Photosensitizers for Homogeneous Photocatalytic Hydrogen Production System |
YANG Zhenqing*,XIANG Wenli, JIAO Yuqiu,WANG Guochen, YU Yuening, XU Huiying, SHAO Changjin
|
Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, China |
|
|
Abstract Hydrogen energy is kind of an ideal clean new energy and plays an important role in renewable energy. At this stage, the development of hydrogen energy in China still faces many challenges, such as the low production efficiency due to the immature technologies, the instability of hydrogen production system, and the high cost of hydrogen energy applications, which hinders the development of hydrogen energy industry. China has obtained leading technological advantages in hydrogen productions from alkaline electrolytic water and coal gasification. Although China ranks first in the scale of hydrogen productions, there is still a big gap between China and the international top technologies in renewable energy hydrogen production, such as photocatalytic and electrocatalytic hydrogen production.
Generally, photocatalytic hydrogen production technology can be divided into two types, heterogeneous and homogeneous hydrogen production technologies. Since most heterogeneous hydrogen production systems use semiconductors as photocatalysts, their light absorption efficiency is low and hydrogen production efficiency is not high. For a homogeneous system composed of photosensitizers, catalysts and sacrificial electron donors, it is a potential hydrogen production technology because of its flexible structure easy to design and adjust systematically. Among them, the photosensitizer is used as the energy harvester for the hydrogen production reaction, and its selection is particularly critical. Recently, noble metals and their complexes photosensitizers have been widely studied. Owing to its limited resource and high cost, the research and development of noble metals based photosensitizers are restricted. As an alternative, the use of pure organic dyes to construct non-noble metal photocatalytic hydrogen production systems is expected to bring a new breakthrough in the development of homogeneous photocatalytic hydrogen production system.
In the non-noble metal photocatalytic hydrogen production system, the pure organic photosensitizers are mainly divided into nitrogenous heterocycles, xanthenes, bodipys and coumarins. The current research on the photocatalytic performance of pure organic dyes for hydrogen production shows that their hydrogen production efficiency is much higher than that of metal-based photosensitizers. Because organic dyes have good structure-activity characteristics, the performance of photosensitizers can be changed and optimized by structural design and modification. In addition, pure organic dyes do not contain metal elements, are cost-effective, rich in resources, and easy to synthesize, and thus have gradually arose much attention in hydrogen production.
In this review,we firstly discussed the homogeneous photocatalytic hydrogen production system, including its basic composition, structure types, photochemical theoretical basis, hydrogen production mechanism analysis and performance research. The advances of non-noble metal photocatalytic hydrogen production system with organic dyes as photosensitizer is reviewed with particular emphasis. Finally, current trends related to the screening design of using organic dyes as photosensitizers for hydrogen production system is outlined, and we further clarified the development direction of hydrogen energy technology.
|
Published: 28 December 2022
Online: 2023-01-03
|
|
Fund:Science Foundation of China University of Petroleum,Beijing (2462020XKJS02), Shanxi Province Science and Technology Major Project (20181101013), and National Natural Science Foundation of China (21625601). |
|
|
1 Lewis N S, Nocera D G. Proceedings of the National Academy of Sciences, 2006, 103(43), 15729. 2 Rafique M, Mubashar R, Irshad M, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(10), 3837. 3 Berardi S, Drouet S, Francas L, et al. Chemical Society Reviews, 2014, 43(22), 7501. 4 Fujishima A, Honda K. Nature, 1972, 238(5358), 37. 5 Bowker M, Morton C, Kennedy J, et al. Journal of Catalysis, 2014, 310(1), 10. 6 Christoforidis K C, Fornasiero P. ChemCatChem, 2017, 9(9), 1523. 7 Jing L, Wang D, Xu Y, et al. Journal of Colloid and Interface Science, 2020, 566, 171. 8 Sielicki K, Aleksandrzak M, Mijowska E. Applied Surface Science, 2020, 508, 145144.1. 9 Christoforidis K C, Fornasiero P. ChemCatChem, 2019, 11(1), 368. 10 Corredor J, Rivero M J, Rangel C M, et al. Journal of Chemical Technology & Biotechnology, 2019, 94(10), 1467. 11 Wang X Z, Li Z J, Wu, L Z, et al. Energy & Environmental Science, 2016, 9, 2083. 12 Li D F, Zheng J, Chen X Y, et al. Progress in Chemistry, 2007, 19(4), 464(in Chinese). 李敦钫, 郑菁, 陈新益, 等. 化学进展, 2007, 19(4), 464. 13 Wen F Y, Yang J H, Zong X, et al. Progress in Chemistry, 2009, 21(11), 2285. (in Chinese). 温福宇, 杨金辉, 宗旭, 等. 化学进展, 2009, 21(11), 2285. 14 Huang J F, Lei Y, Luo T, et al. ChemSusChem, 2020, 13, 5863. 15 Pan J B, Shen S, Zhou W, et al. Acta Physico-Chimica Sinica, 2020, 36(3), 1905068. (in Chinese). 潘金波, 申升, 周威, 等. 物理化学学报, 2020, 36(3), 1905068. 16 Yang K, Li X X, Zeng D B, et al. Chinese Journal of Catalysis, 2019(6), 796. (in Chinese). 杨凯, 李笑笑, 曾德彬, 等. 催化学报, 2019(6), 796. 17 Zhang J, Xu Q, Feng Z, et al. Angewandte Chemie International Edition, 2010, 47(9), 1766. 18 Liu F, Shi R, Wang Z, et al. Angewandte Chemie International Edition, 2019, 58(34), 11868. 19 Zhou H, Pan J Y, Ding L, et al. International Journal of Hydrogen Energy, 2014, 39(29), 16293. 20 Zong X, Yan H, Wu G, et al. Journal of the American Chemical Society, 2008, 130(23), 7176. 21 Min S X, Lyu G X. Acta Physico-Chimica Sinica, 2011, 27(9), 2178. 22 Sabatini R P, Mccormick T M, Lazarides T, et al. Journal of Physical Chemistry Letters, 2011, 2(3), 223. 23 Puangpetch T, Sommakettarin P, Chavadej S, et al. International Journal of Hydrogen Energy, 2010, 35(22), 12428. 24 Fang W J, Shangguan W F. Industrial Catalysis, 2016, 24(12), 1(in Chinese). 房文健, 上官文峰. 工业催化, 2016, 24(12), 1. 25 Liu X, Li Y X, Peng S Q, et al. Acta Physico-Chimica Sinica, 2015, 31(4), 612(in Chinese). 刘兴, 李越湘, 彭绍琴, 等. 物理化学学报, 2015, 31(4), 612. 26 Han Z, Eisenberg R. Accounts of Chemical Research, 2014, 47(8), 2537. 27 Khnayzer R S, Mccusker C E, Olaiya B S, et al. Journal of the American Chemical Society, 2013, 135(38), 14068. 28 Luo Y, Shi Y P, Yao G P, et al. Chinese Journal of Inorganic Chemistry, 2012, 28(6), 1139(in Chinese). 罗云, 史永平, 姚桂平, 等. 无机化学学报, 2012, 28(6), 1139. 29 Zhu L, Yue Q D, Jiang D C, et al. Chinese Journal of Catalysis, 2018, 39(11), 1753 (in Chinese). 祝亮, 岳秋地, 江道传, 等. 催化学报, 2018, 39(11), 1753. 30 Li X, Wang M, Zheng D, et al. Energy & Environmental Science, 2012, 5, 8220. 31 Adam D, Bösche L, Castaneda-Losada L, et al. Chemsuschem, 2017, 10(5), 894. 32 Jiang Y S, Li T J. Photochemistry, Chemical Industrial Press, China, 2005(in Chinese). 姜月顺, 李铁津. 光化学, 化学工业出版社, 2005. 33 Zhang J C, Wang D Y. Modern photochemistry, Chemical Industrial Press, China, 2006(in Chinese). 张建成, 王夺元. 现代光化学, 化学工业出版社, 2006. 34 Fan M G. Molecular photochemistry and photofunctional materials science, Science Press, China, 2009(in Chinese). 樊美公. 分子光化学与光功能材料科学, 科学出版社, 2009. 35 Jiang Y S, Yang W S. Electronic processes in chemistry, Science Press, China, 2004(in Chinese). 姜月顺, 杨文胜. 化学中的电子过程, 科学出版社, 2004. 36 Dexter D L J. Journal of Chemical Physics, 1953, 21(5), 836. 37 Barnes W L, Andrew P. Nature, 1999, 400(6744), 505. 38 Marcus R A. The Journal of Chemical Physics, 1956, 24(5), 9668. 39 Rehm D, Weller A. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1969, 73(9), 834. 40 Fihri A, Artero V, Pereira A, et al. Dalton Transactions, 2008, 41, 5567. 41 Krasna A. Photochemistry and Photobiology, 1979, 29, 267. 42 Krasna A. Photochemistry and Photobiology, 1980, 31, 75. 43 Kotani H, Ohkubo K, Takai Y, et al. Journal of Physical Chemistry B, 2006, 110(47), 24047. 44 Fukuzumi S. Bioinspired European Journal of Inorganic Chemistry, 2008, 2008(9), 1351. 45 Kotani H, Ono T, Ohkubo K, et al. Physical Chemistry Chemical Physics, 2007, 9(12), 1487. 46 Gong L, Wang J, Li H, et al. Catalysis Communications, 2011, 12(12), 1099. 47 Gueret R, Poulard L, Oshinowo M, et al. ACS Catalysis, 2018, 8 (5), 3792. 48 Shao C J, Xia Q D, Qin C, et al. The Journal of Physical Chemistry C, 2020, 124(7), 4050. 49 Shimidzu T, Iyoda T, Koide Y. Journal of the American Chemical Society, 1985, 107(1), 35. 50 Bi Z C, Tian X D. Chinese Science Bulletin, 1985(10), 89(in Chinese). 毕只初, 田心棣. 科学通报, 1985(10), 89. 51 Hu X Z, Zheng H Q, Rao H, et al. Journal of the Energy Institute, 2015, 88(4), 359, 52 Zhang X, Jin Z, Li Y, et al. Journal of Physical Chemistry C, 2009, 113(6), 2630. 53 Li Q Y, Jin Z L, Peng Z G, et al. Journal of Physical Chemistry C, 2007, 111(23), 8237. 54 Zhang X, Jin Z, Li Y, et al. Journal of Power Sources, 2007, 166(1), 74. 55 Lazarides T, Mccormick T, Du P, et al. Journal of the American Chemical Society, 2009, 131(26), 9192. 56 Zhang W, Hong J, Zheng J, et al. Journal of the American Chemical Society, 2011, 133(51), 20680. 57 Mccormick T M, Calitree B D, Orchard A, et al. Journal of the American Chemical Society, 2010, 132(44), 15480. 58 Mclaughlin M P, Mccormick T M, Eisenberg R, et al. Chemical Communications, 2011, 47(28), 7989. 59 Han Z, Mcnamara W R, Eum M S, et al. Angewandte Chemie International Edition, 2012, 124(7), 1699. 60 Das A, Han Z, Brennessel W W, et al. ACS Catalysis, 2015, 5(4), 2255. 61 Sabatini R P, Eckenhoff W T, Orchard A, et al. Journal of the American Chemical Society, 2014, 136(21), 7740. 62 Luo G G, Li X C, Wang J H. Chemistryselect, 2016, 1(3), 425. 63 Zhao Y, Wang Y, Wu Q, et al. Chinese Journal of Catalysis, 2018, 39(3), 517. 64 Zhang P, Wang M, Dong J, et al. The Journal of Physical Chemistry C, 2010, 114(37), 15868. 65 Dong J, Wang M, Zhang P, et al. Journal of Physical Chemistry C, 2011, 115(30), 15089. 66 Kaur P, Singh K. Journal of Materials Chemistry C, 2019, 7, 11361. 67 Ooyama Y, Hagiwara Y, Mizumo T, et al. New Journal of Chemistry, 2013, 37(8), 2479. 68 Shah M F, Mirloup A, Chowdhury T H, et al. Sustainable Energy & Fuels, 2019, 3, 2983. 69 Shah M F, Mirloup A, Chowdhury T H, et al. Sustainable Energy & Fuels, 2020, 4, 1908. 70 Li X C. Construction and performance of organic photosensitizer-cobalt molecular catalyst system for hydrogen production by artificial light synthesis. Master's Thesis, Huaqiao University, China, 2016 (in Chinese). 李晓聪. 有机光敏剂-钴分子催化剂人工光合成产氢体系的构建与性能研究. 硕士学位论文, 华侨大学, 2016. 71 Bartelmess J, Francis A J, El Roz K A, et al. Inorganic Chemistry, 2014, 53(9), 4527. 72 Manton J C, Long C, Vos J G, et al. Physical Chemistry Chemical Physics, 2014, 16(11), 5229. 73 Dura L, Ahrens J, Pohl M M, et al. Chemistry-A European Journal, 2015, 21(39), 13549. 74 Sabatini R P, Lindley B M, Mccormick T M, et al. Journal of Physical Chemistry B, 2016, 120(3), 527. 75 Luo G G, Lu H, Zhang X L, et al. Physical Chemistry Chemical Physics, 2015, 17(15), 9716. 76 Li X C , Luo G G, Fang K, et al. Scientia Sinica Chimica, 2015, 45(8), 843(in Chinese). 李晓聪, 骆耿耿, 方凯, 等. 中国科学, 2015, 45(8), 843. 77 Luo G G, Fang K, Wu J H. Chemical Communications, 2015, 51(62), 12361. 78 Eckenhoff W T, Eisenberg R. Dalton Transactions, 2012, 41(42), 13004. 79 Mir A Q, Dolui D, Khandelwal S, et al. Journal of Visualized Experiments, 2019, 152, 60231. 80 Gao S, Huang S, Duan Q, et al. International Journal of Hydrogen Energy, 2014, 39(20), 10434. 81 He Y. Application of organic photosensitizer in homogeneous photoinduced hydrogen production system. Master's Thesis, Dalian University of Technology, China, 2013(in Chinese). 何宇. 有机光敏剂在均相光致产氢体系中的应用. 硕士学位论文, 大连理工大学, 2013. 82 Dong R, Chen K K, Wang P, et al. Dyes and Pigments, 2019, 166, 84. 83 Biswal B P, Vignolo-Gonzalez H A, Banerjee T, et al. Journal of the American Chemical Society, 2019, 141(28), 11082. 84 Luo W, Liang Y C, Hu Z C, et al. Chemical Journal of Chinese Universities, 2020, 41(3), 456(in Chinese). 罗威, 梁佑才, 胡志诚, 等. 高等学校化学学报, 2020, 41(3), 456. 85 Yong W W, Lu H, Li H, et al. ACS Applied Materids & Interfaces, 2018, 10(13), 10828. 86 Wang Y, Vogel A, Sachs M, et al. Nature Energy, 2020, 5(8), 633. 87 Liu Y, Zhang F, Wu P, et al. Inorganic Chemistry, 2019, 58(1), 924. 88 Wang Z Y, Rao H, Deng M F, et al. Physical Chemistry Chemical Physics, 2013, 15(39). 16665. 89 Zhang Y J, Guo L J, Yan W, et al. Acta Energiae Solaris Sinica, 2006, 27(11), 1113(in Chinese). 张耀君, 郭烈锦, 延卫, 等. 太阳能学报, 2006, 27(11), 1113. 90 Zhong W S, Zhang Q Y. Unviersity Chemistry, 1988(2), 39 (in Chinese). 钟文士, 张启衍. 大学化学, 1988(2), 39. 91 Fu X, Long J, Wang X, et al. International Journal of Hydrogen Energy, 2008, 33(22), 6484h. 92 Bai Y, Wilbraham L, Slater B J, et al. Journal of the American Chemical Society, 2019, 141(22), 9063. 93 Masood H, Toe C Y, Teoh W Y, et al. ACS Catalysis, 2019, 141(22), 9063. |
|
|
|