Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 130-134    https://doi.org/10.11896/j.issn.1005-023X.2017.022.026
  材料研究 |
微波对褐煤介电特性及干燥的影响*
马洪业1,2,刘晨辉1,2,3,张利波1,2,彭金辉1,2,林国1,2
1 昆明理工大学非常规冶金教育部重点实验室,昆明 650093;
2 微波能工程应用及装备技术国家地方联合工程实验室,昆明 650093;
3 云南民族大学民族地区矿产资源综合利用重点实验室,昆明 650500
Effect of Microwave on the Dielectric Properties and Drying of Lignite
MA Hongye1,2, LIU Chenhui1,2,3, ZHANG Libo1,2, PENG Jinhui1,2, LIN Guo1,2
1 Key Laboratory of Unconventional Metallurgy of Ministry of Education,Kunming University of Science and Technology,Kunming 650093;
2 National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093;
3 Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Yunnan Minzu University, Kunming 650500
下载:  全 文 ( PDF ) ( 634KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究微波干燥褐煤的可行性,选取云南昭通褐煤进行试验研究,采用微波介电特性变温测试系统研究褐煤介电特性及微波穿透深度随表观密度的变化。结果表明,褐煤介电特性与表观密度成正相关,穿透深度与表观密度成负相关,同时拟合得到褐煤表观密度与介电特性、微波穿透深度的关系式。采用微波干燥系统对不同功率和质量下的褐煤升温特性进行研究。结果表明,微波可以在1 min内将褐煤升温至100 ℃,最大干燥速率为0.198 (g/g db)·min-1,微波加热过程中,温度变化表现出3个阶段:快速升温阶段、恒温阶段、减速升温阶段。褐煤升温至100 ℃前,物料的质量和功率对升温速率影响不大,100 ℃之后,褐煤的升温速率随着功率的增加而增大,随物料质量增加而减小;通过微波干燥与常规干燥对比,发现当褐煤完全干燥时,微波干燥用时17 min,常规干燥用时320 min,微波干燥明显优于常规干燥。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马洪业
刘晨辉
张利波
彭金辉
林国
关键词:  褐煤  微波干燥  介电特性  升温特性    
Abstract: To study the feasibility of microwave drying of lignite, Yunnan Zhaotong lignite were selected and the microwave dielectric properties of temperature testing system was adopted to study the lignite dielectric properties and microwave penetration depth with apparent density change. The results showed that the dielectric properties of lignite were positively correlated with the apparent density, and the penetration depth was negatively correlated with the apparent density, and the relationship between the apparent density and the dielectric properties and the microwave penetration depth was obtained. The heating characteristics of lignite under different power and quality were studied by microwave drying system. The results showed that the microwave could reach 100 ℃ in 1 min, the maximum drying rate was 0.198 (g/g db)·min-1, in the process of microwave heating, the temperature change showed three stages,namely the stage of rapid warming, constant temperature stage, slow heating stage. Before the lignite was heated to 100 ℃, the quality of materials and power has little effect on the heating rate, after 100 ℃, lignite heating rate increased with the increase of power, and decreased with the increase of material quality.Comparing microwave drying and conventional drying of contrast,it was found that when lignite was completely dried, microwave drying cost 17 min, conventional drying cost 320 min, microwave drying is superior to conventional drying.
Key words:  lignite    microwave drying    dielectric properties    temperature increasing characteristics
                    发布日期:  2018-05-08
ZTFLH:  TD849  
基金资助: *国家自然科学基金青年基金(51504217);云南省科技计划青年基金(2015FD031)
通讯作者:  张利波,男,1977年生,博士,教授,博士研究生导师,从事非常规冶金研究E-mail:libozhang77@163.com   
作者简介:  马洪业:男,1990年生,硕士研究生,从事微波冶金研究E-mail:hongye0226@163.com
引用本文:    
马洪业,刘晨辉,张利波,彭金辉,林国,. 微波对褐煤介电特性及干燥的影响*[J]. 材料导报编辑部, 2017, 31(22): 130-134.
MA Hongye, LIU Chenhui, ZHANG Libo, PENG Jinhui, LIN Guo,. Effect of Microwave on the Dielectric Properties and Drying of Lignite. Materials Reports, 2017, 31(22): 130-134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.026  或          http://www.mater-rep.com/CN/Y2017/V31/I22/130
1 Fan W, Jia C, Hu W, et al. Dielectric properties of coals in the low-terahertz frequency region[J]. Fuel, 2015,162:294.
2 Zhou F, Cheng J, Wang A, et al. Upgrading Chinese Shengli lignite by microwave irradiation for slurribility improvement[J]. Fuel, 2015,159:909.
3 Pusat S, Akkoyunlu M T, Erdem H H, et al. Drying kinetics of coarse lignite particles in a fixed bed[J]. Fuel Processing Technol, 2015,130:208.
4 Fu Xuehai, Lu Lu, Ge Yanyan, et al. China lignite resources and physical features[J]. Coal Sci Technol, 2012,40(10):104(in Chinese).
傅雪海, 路露, 葛燕燕, 等. 我国褐煤资源及其物性特征[J]. 煤炭科学技术,2012,40(10):104.
5 Zhu Shuquan. Development status and analysis of lignite quality improvement technology[J]. Clean Coal Technol, 2011, 17(1):1(in Chinese).
朱书全. 褐煤提质技术开发现状及分析[J]. 洁净煤技术, 2011,17(1):1.
6 Osman H, Jangam S V, Lease J D, et al. Drying of low-rank coal (LRC)—A review of recent patents and innovations[J]. Drying Technol, 2011,29(15):1763.
7 彭金辉, 杨显万. 微波能技术新应用[M]. 昆明:云南科技出版社, 1997.
8 Luo Feixiang, Cai Changfeng, Sun Jing, et al. Microwave treatment of refractory organic compounds in coking tail water by GC/MS analysis[J] . J Chongqing University of Technology (Natural Science), 2016(3):57(in Chinese).
罗飞翔, 蔡昌凤, 孙敬, 等. 微波处理焦化尾水中难降解有机物的GC/MS分析[J]. 重庆理工大学学报(自然科学版), 2016(3):57.
9 Yao Liansheng. Experimental study on microwave drying and moisture transfer characteristics of lignite[D]. Jinan: Shandong University,2015(in Chinese).
姚连升. 褐煤微波干燥及水分迁移特性试验研究[D].济南:山东大学, 2015.
10 Lester E, Kingman S. Effect of microwave heating on the physical and petrographic characteristics of a UK coal[J]. Energy Fuels, 2004,18(1):140.
11 Li D L, Liang D Q, Fan S S, et al. In situ hydrate dissociation using microwave heating: Preliminary study[J]. Energy Conversion Management, 2008,49(8):2207.
12 Wang Weidong, Yang Hu, Sun Yuan, et al. Lignite dewatering rule and related influencing factors in the microwave field[J]. J China Coal Soc,2014,39(6):1159(in Chinese).
王卫东, 杨琥, 孙远, 等. 微波场中褐煤水分脱除规律及影响因素分析[J]. 煤炭学报, 2014,39(6):1159.
13 Xu Zhiqiang, Yang Xiao, Ren Yanggang, et al. Experimental study on the re-adsorption characteristics of microwave upgraded lignite[J]. J China Coal Soc, 2015,40(S2):486(in Chinese).
徐志强, 杨虓, 任阳光, 等. 微波提质褐煤复吸特性的试验研究[J]. 煤炭学报, 2015,40(S2):486.
14 Ji Z, Wang J, Yin Z, et al. Effect of microwave irradiation on typical inorganic salts crystallization in membrane distillation process[J]. J Membr Sci, 2014,455:24.
15 Zhao Hongfu. Resonance cavity perturbation method for measuring dielectric constant and application of matlab[D]. Changchun: Jilin University,2005(in Chinese).
赵红福. 谐振腔微扰法测量介电常数及Matlab在其中的应用[D]. 长春:吉林大学, 2005.
16 方俊鑫. 电介质物理学[M]. 北京: 科学出版社, 1989:34.
17 Sun Jun, Zhang Guokun, Mao Hanping, et al. Non-destructive moisture content detection of corn leaves based on dielectric properties and regression algorithm[J]. Trans Chin Soc Agricultural Machinery, 2016,47(4):257(in Chinese).
孙俊, 张国坤,毛罕平,等. 基于介电特性与回归算法的玉米叶片含水率无损检测[J]. 农业机械学报, 2016,47(4):257.
18 Liu C, Zhang L, Peng J, et al. Dielectric properties and microwave heating characteristics of sodium chloride at 2.45 GHz[J]. High Temperature Mater Processes, 2013,32(6):587.
19 Liu C, Zhang L, Peng J, et al. Effect of temperature on dielectric property and microwave heating behavior of low grade Panzhihua ilmenite ore[J]. Trans Nonferrous Met Soc China, 2013,23(11):3462.
20 Liu C H, Zhang L B, Peng J H, et al. Temperature and moisture dependence of the dielectric properties of silica sand[J]. J Microwave Power Electromagnetic Energy, 2013,47(3):199.
21 Kumar P, Coronel P, Simunovic J, et al. Measurement of dielectric properties of pumpable food materials under static and continuous flow conditions[J]. J Food Sci, 2007,72(4):E177.
22 Zhang L, Liu C, Qu W, et al. Dielectric properties and temperature increase characteristics of zinc oxide dust from fuming furnace[J]. Trans Nonferrous Met Soc China, 2014,24(12):4004.
23 Su Ting, Lu Yanqiang. On the pyrolysis technology of the low metamorphic coal[J]. J Yulin University, 2014, 24(2):9(in Chinese).
苏婷, 卢艳强. 低变质煤的热解技术[J]. 榆林学院学报, 2014,24(2):9.
24 Yao Teng. Application of microwave in research of coal slime low-temperature dehydration upgrading[J]. Vacuum Electron, 2013(6):37(in Chinese).
姚腾. 微波在煤泥低温脱水提质的应用研究[J]. 真空电子技术, 2013(6):37.
25 Zhu J F, Liu J Z, Wu J H, et al. Thin-layer drying characteristics and modeling of Ximeng lignite under microwave irradiation[J]. Fuel Processing Technol, 2015,130:62.
26 Mushtaq F, Mat R, Ani F N. A review on microwave assisted pyrolysis of coal and biomass for fuel production[J]. Renewable Sustainable Energy Rev, 2014,39(6):555.
[1] 钟汝能, 郑勤红, 向泰, 姚斌. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报, 2018, 32(24): 4258-4263.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed