Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22090288-7    https://doi.org/10.11896/cldb.22090288
  无机非金属及其复合材料 |
石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响
李辰治1, 蒋林华2,*
1 同济大学土木工程学院,上海200092
2 河海大学力学与材料学院,南京 210098
Effect of Limestone Powder Content on Chloride Threshold for Rebar Depassivation in Concrete
LI Chenzhi1, JIANG Linhua2,*
1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 College of Mechanics and Materials, Hohai University, Nanjing 210098, China
下载:  全 文 ( PDF ) ( 7830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了不同石灰石粉掺量(10%、20%、30%,质量分数,下同)对钢筋脱钝临界氯离子含量的影响,对混凝土试件进行干湿循环处理以加速氯离子渗透,同时采用半电池电位和电化学阻抗谱分别测定了钢筋的自腐蚀电位和腐蚀电流密度。结果表明,临界氯离子含量随着石灰石粉掺量的增加而减小,这主要是因为石灰石粉的掺入导致水泥含量降低,从而使混凝土孔隙液pH值降低。XRD分析表明石灰石粉的掺入抑制了单硫型水化硫铝酸钙(AFm)相的生成,从而降低了水化产物的氯离子结合能力。腐蚀电流密度的变化趋势服从三参数Weibull分布,其概率密度可以表征钝化膜破裂的速率,随着石灰石粉掺量的增加,钝化膜破裂速率增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辰治
蒋林华
关键词:  石灰石粉掺量  临界氯离子含量  腐蚀电位与电流密度  钢筋脱钝  Weibull分布    
Abstract: The effect of limestone powder (LP) content on the chloride threshold for rebar depassivation was investigated. Wetting-drying cycles were conducted to accelerate the chloride penetration into concrete specimens. Half-cell potential and AC impedance techniques were employed to monitor the dynamic changes of self-corrosion potential (Ecorr) and corrosion current density (icorr), respectively, which were used to diagnose the corrosion condition of the rebar. The results indicate that the chloride threshold decreases as the LP content increases, which is attributed to the lower pH value of concrete pore solution due to decreased cement content. XRD patterns demonstrate that incorporating LP inhibits the formation of monosulfate (AFm) phase, thereby undermining the chloride binding capacity of the hydrates. The variation of icorr with time follows a three-parameter Weibull distribution, with the probability density representing the rate of passivity breakdown, which is found to increase with increasing limestone content.
Key words:  limestone powder content    chloride threshold    corrosion potential and current density    passivity breakdown    Weibull distribution
发布日期:  2024-01-16
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52078183)
通讯作者:  蒋林华,河海大学力学与材料学院教授、博士研究生导师。1998年获河海大学博士学位,同年到加拿大矿物与能源研究中心(CANMET)访问研修1年。目前主要从事工程新材料、高性能混凝土与裂缝控制技术等方面的研究工作。主持国家重点研发计划项目课题、国家自然科学基金、重大工程科技项目等100余项,获省部级科技奖6项,申请国家发明专利60件,发表学术论文340余篇(其中SCI收录103篇,SCI他引1 016次);主编和参编著作、教材、规程标准13部。hhulhjiang@163.com   
作者简介:  李辰治,2019年6月于河海大学获得工学硕士学位。现为同济大学土木工程学院博士研究生,目前主要研究领域为混凝土结构耐久性。
引用本文:    
李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
LI Chenzhi, JIANG Linhua. Effect of Limestone Powder Content on Chloride Threshold for Rebar Depassivation in Concrete. Materials Reports, 2024, 38(1): 22090288-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090288  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22090288
1 Shi C J, Wang D H, Jia H F, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1582 (in Chinese).
史才军, 王德辉, 贾煌飞, 等. 硅酸盐学报, 2017, 45(11), 1582.
2 Da B, Yu H F, Ma H Y, et al. Materials Reports, 2019, 33(12), 2002 (in Chinese).
达波, 余红发, 麻海燕, 等. 材料导报, 2019, 33(12), 2002.
3 Xiong Y Z, Wan H W. Concrete, 2010(9), 89 (in Chinese).
熊远柱, 万慧文. 混凝土, 2010(9), 89.
4 Xiao J, Wang Y H, Deng D H, et al. Journal of Building Materials, 2008(2), 212 (in Chinese).
肖佳, 王永和, 邓德华, 等. 建筑材料学报, 2008(2), 212.
5 Wang D H, Shi C J, Jia H F, et al. Journal of Fuzhou University (Natural Science Edition), 2018, 46(6), 874(in Chinese).
王德辉, 史才军, 贾煌飞, 等. 福州大学学报(自然科学版), 2018, 46(6), 874.
6 Panesar D K, Zhang R X. Construction and Building Materials, 2020, 251, 118866.
7 Yu B, Huang J M, Wan W W, et al. Materials Reports, 2020, 34(S2), 1227 (in Chinese).
余波, 黄俊铭, 万伟伟, 等. 材料导报, 2020, 34(S2), 1227.
8 Shi J J, Ming J, Sun W. Cement and Concrete Composites, 2018, 92, 110.
9 ASTM, C876-91, Standard Test Method for Half-cell Potentials of Uncoated Reinforcing Steel in Concrete, 1991.
10 Hu J Y, Zhang S S, Chen E, et al. Construction and Building Materials, 2022, 325, 126718.
11 Angst U M, Elsener B, Larsen C K, et al. Corrosion Science, 2011, 53, 1451.
12 Xu J X, Jiang L H, Wang J X. Construction and Building Materials, 2009, 23, 1902.
13 Meira G R, Andrade C, Vilar E O, et al. Construction and Building Materials, 2014, 55, 289.
14 Hu X, Shi C J, Li Q L, et al. Journal of the Chinese Ceramic Society, 2015, 43(4), 376 (in Chinese).
胡翔, 史才军, 李庆玲, 等. 硅酸盐学报, 2015, 43(4), 376.
15 Weibull W. Journal of Applied Mechanics, 1951, 18, 293.
16 Strzelecki P. International Journal of Fatigue, 2020, 145, 106080.
17 Li X, Grace J R, Bi X, et al. Fuel, 2016, 184, 211.
18 Jiang H P, Jiang A N, Yang X R. Rock and Soil Mechanics, 2021, 42(7), 1894 (in Chinese).
蒋浩鹏, 姜谙男, 杨秀荣. 岩土力学, 2021, 42(7), 1894.
19 Wang D H, Shi C J, Farzadnia N, et al. Construction and Building mate-rials, 2018, 181, 659.
20 Lothenbach B, Saout G L, Gallucci E, et al. Cement and Concrete Research, 2008, 38, 848.
21 Kakali G, Tsivilis S, Aggeli E, et al. Cement and Concrete Research, 2000, 30, 1073.
[1] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[2] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[3] 孟祥晖, 冯琼, 张云升, 乔宏霞, 谢晓扬. 盐渍土环境下钢筋混凝土腐蚀劣化行为及竞争失效分析[J]. 材料导报, 2023, 37(14): 22010281-10.
[4] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[5] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[6] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[7] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed