Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 735-741    https://doi.org/10.11896/j.issn.1005-023X.2018.05.008
  材料综述 |
超表面在红外波段的光传输特性: 偏振控制、旋光性和不对称传输
潘威康, 汤登飞, 董建峰
宁波大学信息科学与工程学院,宁波 315211
Optical Transmission Characteristics of Metasurfaces in Infrared Region: Polarization Control, Optical Activity and Asymmetric Transmission
PAN Weikang, TANG Dengfei, DONG Jianfeng
College of Information Science and Engineering, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 2791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超表面(Metasurfaces, MMs)是拥有亚波长尺寸谐振单元结构的人工平面材料,其电磁特性主要由结构决定。超表面具有极强的波前控制能力。本文着重介绍了近年来纳米结构超表面在红外波段的光传输特性,包括光波偏振控制、旋光性、不对称传输等方面的理论和实验研究进展,简要介绍了制备纳米结构超表面的工艺技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘威康
汤登飞
董建峰
关键词:  超表面  偏振控制  旋光性  不对称传输    
Abstract: Metasurfaces, a new emerging class of artificial planar materials consisting of arrays of sub-wavelength resonant elements, exhibit structure-determined electromagnetic properties and functionalities, and possess strong ability of controlling the wave front. We herein mainly discuss the theoretical and experimental research advances in optical transmission characteristics of nanostructured metasurfaces in infrared region, from the perspectives of polarization control, optical activity and asymmetric transmission, and also briefly describe metasurfaces’ manufacturing technique. The paper ends with a discussion on the future development trends.
Key words:  metasurface    polarization control    optical activity    asymmetric transmission
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TB33  
  O441  
基金资助: 国家自然科学基金(61475079)
通讯作者:  董建峰:通信作者,男,1964年生,博士,教授,博士研究生导师,从事超材料、手征介质波导等方面的研究 E-mail:dongjianfeng@nbu.edu.cn   
作者简介:  潘威康:男,1994年生,硕士研究生,研究方向为超表面光传输特性 E-mail:793090503@qq.com
引用本文:    
潘威康, 汤登飞, 董建峰. 超表面在红外波段的光传输特性: 偏振控制、旋光性和不对称传输[J]. 《材料导报》期刊社, 2018, 32(5): 735-741.
PAN Weikang, TANG Dengfei, DONG Jianfeng. Optical Transmission Characteristics of Metasurfaces in Infrared Region: Polarization Control, Optical Activity and Asymmetric Transmission. Materials Reports, 2018, 32(5): 735-741.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.008  或          http://www.mater-rep.com/CN/Y2018/V32/I5/735
1 Li T, Wang S M, Cao J X, et al. Cavity-involved plasmonic metamaterial for optical polarization conversion[J].Applied Physics Letters,2010,97(26):261113.
2 Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J].Nano Letters,2013,13(3):1086.
3 Li Z, Liu W, Cheng H, et al. Realizing broadband and invertible li-near-to-circular polarization converter with ultrathin single-layer metasurface[J].Scientific Reports,2014,5:18106.
4 Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: Asymmetric transmission of light[J].Physical Review Letter,2014,113(2):023902.
5 Huang C. The electromagnetic properties of chiral metamaterial[D].Nanjing:Nanjing University,2012(in Chinese).
黄慈.人工手征特异介质的电磁性质研究[D].南京:南京大学,2012.
6 Li Z, Mutlu M, Ozbay E. Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission[J].Journal of Optics,2013,15(2):023001.
7 Lindell I V, Sihvola A H, Tretyakov S A, et al. Electromagnetic waves in chiral and bi-isotropic media[M].Artech House,Boston and London,1994.
8 Svirko Y, Zheludev N, Osipov M. Layered chiral metallic microstructures with inductive coupling[J].Applied Physics Letters,2001,78(4):498.
9 Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J].Nature Communications,2012,3:870.
10 Kuwata-Gonokami M, Saito N, Ino Y, et al. Giant optical activity in quasi-two-dimensional planar nanostructures[J].Physical Review Letters,2005,95(22):227401.
11 Dong J, Zhou J, Koschny T, et al. Bi-layer cross chiral structure with strong optical activity and negative refractive index[J].Optics Express,2009,17(16):14172.
12 Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J].Optics Letters,2009,34(16):2501.
13 Li J, Yang F Q, Dong J F. Design and simulation of L-shaped chiral negative refractive index structure[J].Progress in Electromagnetics Research,2011,116:395.
14 Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial[J].Applied Physics Letters,2008,93(19):191911.
15 Sersic I, van de Haar M A, Arango F B, et al. Ubiquity of optical activity in planar metamaterial scatterers[J].Physical Review Letters,2012,108(22):223903.
16 Feng C, Wang Z B, Lee S, et al. Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams[J].Optics Communications,2012,285(10):2750.
17 Kruk S S, Poddubny A N, Powell D A, et al. Polarization properties of optical metasurfaces of different symmetries[J].Physical Review B,2015,91(19):195401.
18 Yu P, Li J, Tang C, et al. Controllable optical activity with non-chiral plasmonic metasurfaces[J].Light Science & Applications,2016,5(7):16096.
19 Li G, Li Q, Yang L, et al. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials[J].Optics Letters,2016,41(13):2911.
20 Fedotov V A, Mladyonov P L, Prosvirin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J].Physics Review Letter,2006,97(16):167401.
21 Fedotov V A, Schwanecke A S, Zheludev N I, et al. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures[J].Nano Letters,2007,7(7):1996.
22 Dong J F, Xu C, Xu J. Research advances in planar chiral metamaterials[J].Materials Review A: Review Papers,2009,23(1):84(in Chinese).
董建峰,徐超,徐键.平面手征超常介质研究进展[J].材料导报:综述篇,2009,23(1):84.
23 Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J].Physical Review Letters,2010,104(25):253902.
24 Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials[J].Physical Review A,2010,82(5):053811.
25 Liu D J, Xiao Z Y, Ma X L, et al. Asymmetric transmission of li-nearly and circularly polarized waves in metamaterial due to symmetry-breaking[J].Applied Physics Express,2015,8(5):052001.
26 Liu N, Guo H, Fu L, et al. Three-dimensional photonic metamate-rials at optical frequencies[J].Nature Materials,2008,7(1):31.
27 Chen P Y, Chen C H, Wang H, et al.Synthesis design of artificial magnetic metamaterials using a genetic algorithm[J].Optical Express,2008,16(17):12806.
28 Sui S, Ma H, Wang J, et al. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces[J].Applied Physics Letter,2016,109(1):014104.
29 Liu D J, Xiao Z Y, Ma X L. Broadband asymmetric transmission and multi-band 90° polarization rotator of linearly polarized wave based on multi-layered metamaterial[J].Optics Communications,2015,354:272.
30 Liu D Y, Li M H, Zhai X M, et al. Enhanced asymmetric transmission due to Fabry-Perot-like cavity[J].Optical Express,2014,22(10),11707.
31 Liu J, Li Z, Liu W, et al. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces[J].Advanced Optical Materials,2016,4(12):2028.
32 Wang H B, Zhou X, Tang D F, et al. Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry-Perot like resonator[J].Journal of Modern Optics,2017,64(7):750.
33 Zhang C,Pfeiffer C,Jang T, et al. Breaking Malus’ law: Enhancing asymmetric light transmission with metasurfaces[C]∥OSA Technical Digest (online).California,2015.
34 Ji R L, Wang S W, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J].Nanoscale,2016,8(15):8189.
35 Wang Z, Wang Y, Adamo G, et al. A novel chiral metasurface with controllable circular dichroism induced by coupling localized and propagating modes[J].Advanced Optical Materials,2016,4(6):883.
36 Jia Y P, Zhang Y L, Dong X Z, et al. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission[J].Applied Physics Letters,2014,104(1):011108.
37 Ding F, Wang Z, He S, et al. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach[J].ACS Nano,2015,9(4):4111.
38 Zhao Y, Askarpour A N, Sun L, et al. Chirality detection of enan-tiomers using twisted optical metamaterials[J].Nature Communications,2017,8,14180.
39 Zhang C, Pfeiffer C, Jang T, et al. Breaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface[J].Laser & Photonics Reviews,2016,10(5):791.
40 Jahani S, Jacob Z. All-dielectric metamaterials[J].Nature Nanotechnology,2016,11(1):23
41 Moitra P, Slovick B A, Gang Yu Z, et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector[J].Applied Physics Letters,2014,104(17):171102.
42 Ma H, Wu R X. Asymmetric transmission of linearly polarized wave in all-dielectric chiral metamaterial[C]∥Progress in Electromagnetic Research Symposium (PIERS).Shanghai,2016.
[1] 汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed