Advancements in the Application and Fabrication Research of High-purity Titanium
ZHU Hao1, WANG Hao2, TAN Chengpeng3, HU Jun3, LIU Lijun3, LI Mingya2, YU Xiaodong1, 3, TAN Chengwen1,3,*
1 School of Material Science and Engineering, Beijing Institute of Technology, Bejing 100081, China 2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei, China 3 High Pure Precision Materials (Suzhou) Co., Ltd., Suzhou 215211, Jiangsu, China
Abstract: High-purity titanium with a purity of no less than 4N is a critical raw material for titanium target materials used in integrated circuit manufacturing. The shrinking feature sizes of semiconductor devices impose higher requirements not only on the purity of high-purity titanium but also on its extremely low oxygen content. However, the high chemical reactivity and oxygen affinity of titanium pose challenges to the stable and cost-effective production of high-purity, low-oxygen titanium. To address this unique property of titanium, various purification methods are often combined for industrial-scale production of high-purity titanium, and extensive research has been conducted on the types and pathways of impurities introduced by different purification methods, aiming to remove various impurities from titanium to achieve stable production of high-purity, low-oxygen titanium. This paper discusses the main methods involved in its industrial production, including the Kroll process, molten salt electrolysis, iodide process, and electron beam melting. The preparation and purification methods of important titanium halides involved in these methods are summarized. Finally, a comparative analysis of these main production methods is conducted, highlighting the advantages and challenges of the iodide process in the industrial production of high-purity, low-oxygen titanium.
朱灏, 汪浩, 檀成鹏, 胡珺, 刘丽君, 李明亚, 于晓东, 谭成文. 高纯度钛的应用与制备研究进展[J]. 材料导报, 2024, 38(18): 23080077-15.
ZHU Hao, WANG Hao, TAN Chengpeng, HU Jun, LIU Lijun, LI Mingya, YU Xiaodong, TAN Chengwen. Advancements in the Application and Fabrication Research of High-purity Titanium. Materials Reports, 2024, 38(18): 23080077-15.
1 Lu K. Science, 2010, 328(5976), 319. 2 Inagaki I, Takechi T, Shirai Y, et al. Nippon Steel & Sumitomo Metal Technical Report, 2014, 106(106), 22. 3 Rack H J, Qazi J I. Materials Science and Engineering:C, 2006, 26(8), 1269. 4 Ting C Y, Wittmer M. Thin Solid Films, 1982, 96(4), 327. 5 Oparowski J M, Sisson R D, Biederman R R. Thin Solid Films, 1987, 153(1-3), 313. 6 Wang S Q, Raaijmakers I, Burrow B J, et al. Journal of Applied Physics, 1990, 68(10), 5176. 7 Ueda Y, Yoshimura Y, Okamoto S. JP. patent, JPH0949074A, 1997. 8 Pelliccione A S, Sant A R, Siqueira M H S, et al. Engineering Failure Analysis, 2019, 105, 1172. 9 Kotsar M L, Lavrikov S A, Nikonov V I, et al. Atomic Energy, 2011, 111(2), 92. 10 Kotsar M, Lavrikov S, Nikonov V, et al. In:Proceedings of the 12th World Conference on Titanium. Beijing, 2012, pp.2237. 11 Held A, Taylor P, Ingelbrecht C, et al. Journal of Analytical Atomic Spectrometry, 1995, 10(10), 849. 12 Sadashiva M, Sheikh M Y, Khan N, et al. International Journal of Recent Technology and Engineering, 2021, 9(6), 111. 13 Mehrpouya M, Cheraghi B H. Micro and Nanosystems, 2016, 8(2), 79. 14 Zamponi C, Rumpf H, Wehner B, et al. Materials Science & Engineering Technology, 2004, 35(5), 359. 15 Rahim M, Frenzel J, Frotscher M, et al. Acta Materialia, 2013, 61(10), 3667. 16 Anene F A, Aiza J C N, Zainol I, et al. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021, 235(19), 3792. 17 Dumitras C G, Cernat R, Stamate T, et al. Journal of Optoelectronics and Advanced Materials, 2014, 16(11-12), 1447. 18 Kim W B, Lee K I, Choi G S, et al. Hangug Jaeryohag Hoeji (Korean Journal of Materials Research), 1997, 7, 608. 19 Kotsar M L, Morenko O G, Shtutsa M G, et al. Inorganic Materials, 2010, 46(3), 282. 20 Rep D B A, Morpurgo A F, Sloof W G, et al. Journal of Applied Physics, 2003, 93(4), 2082. 21 Baumann R C. IEEE Transactions on Device and Materials Reliability, 2001, 1(1), 17. 22 Quirk M, Serda J. Semiconductor manufacturing technology, Prentice Hall, USA, 2001, pp.114. 23 Mo W. Titanium, Metallurgical Industry Press, China, 2008, pp.10 (in Chinese). 莫畏. 钛, 冶金工业出版社, 2008, pp.10. 24 Conrad H. Progress in Materials Science, 1981, 26(2-4), 123. 25 Kant A, Strauss B. The Journal of Chemical Physics, 1964, 41(12), 3806. 26 Kekesi T, Isshiki M. In:Purification process and characterization of ultra high purity metals, Waseda Y, Isshiki M, ed. , Springer-verlag,New York, 2002, pp.39. 27 Singh A J. High Temperature Materials and Processes, 1993, 11(1-4), 305. 28 OTC, Iida T, Nakamura N, et al. In:Proceedings of the 13th World Conference on Titanium. Hoboken, NJ, USA, 2016, pp.103. 29 Kanda M, Sato K, Kimura E. In:Annual Meeting and Exhibition of the Minerals, Metals and Materials Society: Anaheim, CA, USA, 1996, pp.1087. 30 Yoshimura Y, Onishi T, Kuramoto M. Materia Japan, 1994, 33(1), 48. 31 Kusamichi H, Yukawa T, Toda H, et al. Keikinzoku, 1955, 1955(15), 66. 32 Hyodo T, Mochizuki N. Journal of the Mining and Materials Processing Institute of Japan, 2007, 123(12), 698. 33 Zelikman A N, Krein O E, Samsonov G V. Metallurgy of rare metals, Nova Science, USA, 2018, pp.171. 34 Godnev I N, Pamfilov A V. Journal of General Chemistry (Журнал общей химии) , 1937, 7, 1264. 35 Qi M F. Chemical Engineering Management, 2022(3), 55 (in Chines). 齐满富. 化工管理, 2022 (3), 55. 36 Chang Y R. Non-Ferrous Mining and Metallurgy, 2009, 25(4), 37 (in Chinese). 常跃仁. 有色矿冶, 2009, 25(4), 37. 37 Liu J Y. Modern Mining, 2019, 35(5), 221 (in Chinese). 刘佳媛. 现代矿业, 2019, 35(5), 221. 38 Xing Z Q. Development of crude TiCl4 purifying with reagentand research of reaction mechanism. Master’s Thesis, Bohai University, China, 2021 (in Chinese). 邢振强. 粗四氯化钛精制试剂开发及其反应机理研究. 硕士学位论文, 渤海大学, 2021. 39 Chen H. Hunan Nonferrous Metals, 2016, 32(2), 36 (in Chinese). 陈辉. 湖南有色金属, 2016, 32(2), 36. 40 Yuan Z F, Zhu Y Q, Xi L, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(1), 283. 41 Zhang Y C, Wang M, Zhang Z, et al. China Metallurgy, 2017, 27(5), 81 (in Chinese). 张玉驰, 王岷, 张琢, 等. 中国冶金, 2017, 27(5), 81. 42 He H L. Research on refining crude titanium tetrachloride and the vanadium removal with aluminum powder. Master’s Thesis, Chengdu University of Technology, China, 2015 (in Chinese). 何华林. 粗四氯化钛精制及铝粉除钒机理研究. 硕士学位论文, 成都理工大学, 2015. 43 Clabaugh W, Leslie R, Gilchrist R. Journal of Research of the National Bureau of Standards, 1955, 55 (5), 261. 44 Song G L. Analysis of main impurities in refined titanium tetrachloride and process control research. Ph.D. Thesis, Beijing Institute of Technology, China, 2015 (in Chinese). 宋光林. 精四氯化钛中主要杂质的分析及其工艺控制研究. 博士学位论文, 北京理工大学, 2015. 45 Goddard J, Litwin M. US patent, US20020179427A1, 2002. 46 Xiong S, Yuan Z, Yin Z, et al. Hydrometallurgy, 2012, 119, 16. 47 Sironi G, Sacaerdote R, Ferrero F. US patent, US3627481A, 1971. 48 Tao E, Xing Z, Yang S. Hydrometallurgy, 2020, 196, 105424. 49 Yang S, Xing Z, Tao E, et al. Carbon Letters, 2022, 32(3), 893. 50 Helberg L E. Australia patent, AU2012220662B2, 2013. 51 Binnewies M, Glaum R, Schmidt M, et al. Chemical vapor transport reactions, De Gruyter, Berlin, Germany, 2012, pp. 131. 52 Loonam A C. Journal of The Electrochemical Society, 1959, 106(3), 238. 53 Mellor J W. A comprehensive treatise on inorganic and theoretical chemistry, volume VII. Longmans, Green and Co, UK, 1927, pp.89. 54 van Arkel A E, de Boer J H. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 148(1), 345. 55 Fast J D. Recueil des Travaux Chimiques Des Pays-Bas, 1939, 58(2), 174. 56 Herczog A, Pidgeon L M. Canadian Journal of Chemistry, 1956, 34(12), 1687. 57 Shah V D, Sharma B P, Paul C M. Journal of the Less Common Metals, 1977, 53(1), 109. 58 Reimert L J. US Patent, US2616784A, 1952. 59 Blumenthal W B, Smith H. Industrial & Engineering Chemistry, 1950, 42(2), 249. 60 Aagaard L, Bronson G E. US Patent, US2608464A, 1952. 61 Loonam A C. US Patent, US2519385A, 1950. 62 Muetterties E L. Inorganic Syntheses, Volume 10. John Wiley & Sons, USA, 2009, pp.1. 63 Lam R K F. In:Materials Week’97:Titanium extraction and processing. Indianapolis, Indiana, 1997, pp.3. 64 Lam R K F. US Patent, US5700519A, 1997. 65 Nishizawa K, Sudo H, Kudo M, et al. JP Patent, JPS62292618A, 1987. 66 Gatineau S, Nikiforov G. US Patent, US10287175B1, 2019. 67 Hunter M A. Journal of the American Chemical Society, 1910, 32(3), 330. 68 Kroll W. Transactions of the Electrochemical Society, 1940, 78(1), 35. 69 Ono K, Okabe T, Ogawa M, et al. Journal of the Iron and Steel Institute of Japan. 1990, 76, 568. 70 Bolívar R, Friedrich B. In:Proceedings─ European Metallurgical Conference 2009. Innsbruck, Austria, 2009, pp.1235. 71 Takeda O, Okabe T. Keikinzoku, 2017, 67(6), 257. 72 Okabe T. A Fundamental study on refining of titanium and its aluminides. Ph.D. Thesis, Kyoto University, Japan, 1993. 73 Turner P C, Hartman A D, Hansen J S, et al. In:Extraction and Processing Division (EPD) Congress 2001. New Orleans, LA, USA, 2001, pp.86. 74 Tanaka J, Okabe T H, Sakai N, et al. Nippon Kinzoku Gakkaishi, 2001, 65(8), 659. 75 Oosthuizen S J, Swanepoel J J. In:Conference of the South African Advanced Materials Initiative. Vanderbijlpark, South Africa, 2018, pp.012008. 76 Moxson V S, Duz V A, Klevtsov A G, et al. US Patent, US9067264B2, 2015. 77 El Khalloufi M, Drevelle O, Soucy G. Minerals, 2021, 11(12), 1425. 78 Suzuki R. In:Basic materials science, manufacturing and newly advanced technologies of titanium and its alloys, Niinomi M, ed., CMC Publishing, Japan, 2009, pp.26. 79 Takeda O, Ouchi T, Okabe T H. Metallurgical and Materials Transactions B, 2020, 51, 1315. 80 Yang B, Zheng R, Wu G, et al. Journal of Magnesium and Alloys, DOI:org/10. 1016/j. jma. 2022. 05. 016 81 Mozhevitina E, Chepurnov A, Chub A, et al. In:Proceedings of the Fifth Low Radioactivity Techniques Workshop. Seattle, WA, USA, 2015, pp.050001-1. 82 Zhuo S, Kaihua L, Liang L, et al. Metallurgical Research & Technology, 2020, 117(1), 101. 83 Chervonyj I, Listopad D, Gab A, et al. Revista de Chimie (Bucharest), 2019, 70(6), 1924. 84 Chervonyj I, Listopad D, Shakhnin D, et al. Revista de Chimie (Bucharest), 2019, 70(7), 2350. 85 Okamura H. JP paten, JP2006131976A, 2006. 86 Hirota M. JP paten, JP2001073042A, 2001. 87 Odagiri M, Inoue H. JP patent, JPH09111361A, 1997. 88 Otsuka K. JP patent, JP2004323911A, 2004. 89 Wada H, Ishigami Y. JP patent, JP2005097674A, 2005. 90 Wada H. JP patent, JP2008274406A, 2008. 91 Yamaguchi S, Hino J, Akimoto B. JP patent, JP2004169139A, 2004. 92 Yan X Y, Fray D J. In:Electrolysis:theory, types and applications, Kuai S, Meng J, ed. , Nova Science Publishers, USA, 2010, pp.1. 93 Reid Jr W E, Bish J M, Brenner A. Period covered January 1953 through June 1954. National Bureau of Standards, Washington, DC, 1955. 94 Sibert M E, Steinberg M A. Journal of Metals, 1956, 8(9), 1162. 95 Leone O Q, Knudsen H, Couch D. Journal of Metal, 1967, 19(3), 18. 96 Chen G Z, Fray D J, Farthing T W. Nature, 2000, 407(6802), 361. 97 Withers J C, Loutfy R O. E. U. patent, EP1957683B1, 2014. 98 Jiao S Q, Zhu H M. Journal of Materials Research, 2006, 21(9), pp.2172. 99 Shindo Y. Denkiseiko, 2006, 77(4), pp.311. 100 Nishimura E, Kuroki M, Kikutake N. JP patent, JP2670836B2, 1997. 101 Gopienko V G, Antipina L N, Olesova Y G. Электрическое рафинирование титана в расплавленных средах, Metalurgy Publis-hing House, Moscow, 1972, pp.4. 102 Menzies I A, Hill D L, Hills G J, et al. Journal of Electroanalytical Chemistry (1959), 1959, 1(2), 161. 103 Komarek K, Herasymenko P. Journal of The Electrochemical Society, 1958, 105(4), 210. 104 Komarek K, Herasymenko P. Journal of The Electrochemical Society, 1958, 105(4), 216. 105 Kreye W C, Kellogg H H. Journal of The Electrochemical Society, 1957, 104(8), 504. 106 Haarberg G M, Kjos O S, Martinez A M, et al. ECS Transactions, 2010, 33(7), 167. 107 Yan B L. Study on preparation of titanium and titanium-aluminum alloys by electrolysis in molten salt. Ph.D. Thesis, Harbin Engineering University, China, 2016 (in Chinese). 闫蓓蕾. 熔盐电解法制备钛及钛铝合金. 博士学位论文, 哈尔滨工程大学, 2016. 108 Paillere P, Choen J. In:Sixth World Conference on Titanium. Cannes, France, 1988, pp.901. 109 Nishimura E, Kuroki M, Kikutake N, et al. US patent, US5336378A, 1994. 110 Weng Q G, Li R D, Yuan T C, et al. Materials Research Innovations, 2013, 17(6), 396. 111 Lin H B, Li R D, Yuan T C. Hunan Nonferrous Metals, 2015, 31(6), 30 (in Chinese). 林洪波, 李瑞迪, 袁铁锤. 湖南有色金属, 2015, 31(6), 30. 112 Li D L, Zhao Y R, Yang G J. China Manganese Industry, 2016, 34(3), 91 (in Chinese). 李斗良, 赵以容, 杨国军. 中国锰业, 2016, 34(3), 91. 113 Miyazaki H, Yamakoshi Y, Shindo Y. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1996, 64(2), 92. 114 Schäfer H. Chemical transport reactions. Academic Press Inc., London, 1964, pp.5. 115 Meng G Y. Chemical vapor deposition & inorganic new materials, Science Press, Beijing, 1984, pp.7(in Chinese). 孟广耀. 化学气相淀积与无机新材料. 科学出版社, 北京, 1984, pp.7. 116 van Arkel A E, Amann P, Borelius G, et al. Reine metalle:herstellung· eigenschaften· verwendung, Springer-Verlag, Germany, 2013, pp.34. 117 Emelyanov V S, Evstukhin A I, Shulov V A. Теория процессов получения чистых металлов, сплавов и интерметаллидов, Energoatomizdat, Moscow, 1983, pp.18. 118 Campbell I E, Jaffee R I, Blocher J M, et al. Journal of the Electrochemical Society, 1948, 93(6), 271. 119 Gonser B W. Metal Progress, 1949, 55, 193. 120 Rolsten R F. Zeitschrift für Anorganische und Allgemeine Chemie, 1960, 305(1-2), 25. 121 Zhou Z H. Research on preparation of high purity titanium by molten salt electrolytic refining process. Master’s Thesis, Central South University, China, 2011 (in Chinese). 周志辉. 熔盐电解精炼制备高纯钛的工艺研究. 硕士学位论文, 中南大学, 2011. 122 Fast J D. Zeitschrift Für Anorganische und Allgemeine Chemie, 1939, 241(1), 42. 123 Liu Z H, Chen Z Q. Materials China, 2008, 27(2), 1 (in Chinese). 刘正红, 陈志强. 稀有金属快报, 2008, 27(2), 1. 124 Yoshimura Y, Inonami Y. JP patent, JPH04246136A, 1992. 125 Kobyakov V P. Vysokochistye Veshchestva, 1994, 6, 45. 126 Evstyukhin A I, Shulov V A, Leont’ev G A, et al. Vysokochistye Veshchestva, 1987, 1, 37. 127 Bigot J. In :Colloque Européen de Métallurgie Sous Vide. Villeneuve-d’Ascq, France, 1975, pp.151. 128 Мухаметшина З Б, Чекмарев A M. Журнал неорганической химии, 1997, 42(5), 803. 129 Ingraham T R, Pidgeon L M. Canadian Journal of Chemistry, 1952, 30(9), 694. 130 Gonser B W. Metal Progress, 1949, 55, 346. 131 Obata M, Higashinakagaha E, Shimotori K. JP patent, JPS62294175A, 1987. 132 Lam R K F. Australia patent, AU2942595A, 1996. 133 Ueda Y, Yoshimura Y, Okamoto S. JP patent, JP2919309B2, 1999. 134 Runnalls O J C, Pidgeon L M. Journal of Metals, 1952, 4, 843. 135 Fang M, Chen X H, Song J M, et al. Light Metals, 2010(2), 55 (in Chinese). 方敏, 陈肖虎, 宋建敏, 等. 轻金属, 2010(2), 55. 136 Chen X H, Liu Y M. Nonferrous Metals(Extractive Metallurgy), 2009(1), 10 (in Chinese). 陈肖虎, 刘义敏. 有色金属(冶炼部分), 2009(1), 10. 137 Cuevas F, Fernández J F, Algueró M, et al. Journal of Alloys and Compounds, 1995, 227(2), 167. 138 Cuevas F, Fernandez J F, Sanchez C. Journal of the Electrochemical Society, 2000, 147(7), 2589. 139 Kagawa M, Ohno R. Journal of the Japan Institute of Metals and Materials, 1974, 38(7), 581. 140 Yoshimura Y. JP patent, JPH03215633A, 1991. 141 Chen X H, Wang H, Liu Y M, et al. Transactions of Nonferrous Metals Society of China, 2009, 19(5), 1348. 142 Choudhury A, Hengsberger E. ISIJ International, 1992, 32(5), 673. 143 Bakish R. Journal of Metals, 1998, 50(11), 28. 144 Shimotori K, Ochi Y, Ishihara H, et al. JP patent, JPS62280335A, 1987. 145 Mitchell A. Materials Science and Engineering:A, 1999, 263(2), 217. 146 Georgiev G, Vasileva V, Nicolov T, et al. Vacuum, 1990, 41(7-9), 2161. 147 Powell A, Pal U, van Den Avyle, et al. Metallurgical and Materials Transactions B, 1997, 28, 1227. 148 Wu Q X. Titanium Industry Progress, 1995(4), 21 (in Chinese). 吴全兴. 钛工业进展, 1995(4), 21. 149 Yagi K, Hino E, Shindou Y. JP patent, JP2013558701A, 2015. 150 Tsukamoto S, Makino S, Fukujima A, et al. JP patent, JP2013506020A, 2015. 151 Ishigami T. Materia Japan, 1994, 33(1), 55. 152 Vutova K, Vassileva V, Koleva E, et al. Journal of Materials Processing Technology, 2010, 210(8), 1089. 153 Miyazaki H, Yamakoshi Y, Shindo Y. Materia Japan, 1994, 33(1), 51. 154 Pfann W G. The Journal of the Minerals, Metals & Materials Society, 1952, 4, 747. 155 Zhang X X, Friedrich S, Friedrich B. Journal of Crystallization Process and Technology, 2018, 8(1), 33. 156 Kozhevnikov O E, Pylypenko M M, Shcherban A P, et al. Problems of Atomic Science and Technology, 2021, 5, 135. 157 Wernick J H, Dorsi D, Byrnes J J. Journal of the Electrochemical Society, 1959, 106(3), 245. 158 Hagihara K, Tachibana T, Sasaki K, et al. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72(12), 928.