Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21188-21198    https://doi.org/10.11896/cldb.19080048
  高分子与聚合物基复合材料 |
笼型低聚倍半硅氧烷/硅橡胶复合材料的制备及性能进展
王峰*, 彭丹, 牟秋红, 张方志, 李冰, 张硕, 于一涛, 李金辉, 赵宁
齐鲁工业大学(山东省科学院),山东省科学院新材料研究所,山东省特种含硅新材料重点实验室,济南 250014
Progress in Preparation and Properties of POSS/Silicone Rubber Composite
WANG Feng*, PENG Dan, MU Qiuhong, ZHANG Fangzhi, LI Bing, ZHANG Shuo, YU Yitao, LI Jinhui, ZHAO Ning
Shandong Provincial Key Laboratory of Special Silicon-Containing Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
下载:  全 文 ( PDF ) ( 9202KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用笼型低聚倍半硅氧烷(POSS)对聚合物进行改性,已经成为近年来高分子材料领域的研究热点。其中,将POSS作为功能填料引入硅橡胶,制备POSS/硅橡胶复合材料,是有机硅材料改性的重点方向。与其他填料相比,POSS具有独特的有机-无机杂化结构,同时具备纳米级尺寸且粒径均一,可以在聚合物基体中达到分子水平的分散。POSS的这些优点使硅橡胶材料的性能进一步优化,可大大拓宽其应用范围。
POSS所具有的类似SiO2的笼型内核,赋予其较高的耐热性和优良的力学性能。因此,POSS的引入对硅橡胶材料的热稳定性能和力学性能的影响尤其显著。近几年,随着具有特殊官能团的新型POSS单体的出现,POSS/硅橡胶复合材料的性能得到进一步提升,在一些特殊领域获得一定应用。POSS作为阻燃填料,已经在硅橡胶绝热材料领域取得了不错的应用效果;将某些含氟的POSS单体引入硅橡胶中,能够明显降低硅橡胶材料的介电常数,可将其作为性能优良的低介电材料使用;用POSS作为填充粒子制备的POSS/硅橡胶混合基质膜,兼具有机膜与无机膜的优势,同时具有较高的热稳定性,已经在气体分离、生物醇回收等领域展现出较好的应用前景。
然而,POSS由于在室温下容易结晶,导致其在聚合物基体中的分散稳定性较差,进而影响复合材料的性能。近几年,研究人员针对POSS在硅橡胶基体中的分散性能进行了大量研究。从分散机理入手,考察了制备工艺、POSS种类等对分散性能的影响;研究了POSS分散状态与复合材料性能的关系,取得了显著的成果。未来仍需要加大研究力度,明确POSS在聚合物中的分散机理,找到提高分散稳定性的方法。
本文首先总结了POSS单体的合成方法以及POSS/硅橡胶复合材料的制备方法。然后综述了POSS/硅橡胶复合材料的性能研究进展,主要包括:力学性能、热稳定性能、阻燃性能、介电性能以及渗透分离性能。最后对POSS/硅橡胶复合材料的发展趋势进行了展望。未来,随着新型POSS单体的出现以及复合材料制备工艺的进步,POSS/硅橡胶复合材料的性能将获得更大的提高,其应用领域也将得到进一步拓展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王峰
彭丹
牟秋红
张方志
李冰
张硕
于一涛
李金辉
赵宁
关键词:  笼型低聚倍半硅氧烷  硅橡胶  复合材料  分散    
Abstract: In recent years, the modification of polymers with polyhedral oligomeric silsesquioxane (POSS) has become a focus of new generation polymer materials. POSS was added into silicone rubber as functional filler to prepare POSS/silicone rubber composites, which was the key direction of modified silicone materials, and has attracted more and more attention. Compared with other filler particles, POSS has unique nano-size organic-inorganic hybrid structure, and can be dispersed in matrix at the level of individual molecule, which lead to the dramatic improvement in properties of silicone rubber materials, and greatly expand their application scope.
POSS molecule has a cage-like core similar to SiO2, which gives it excellent heat resistance and mechanical properties. Therefore, POSS can significantly improve the thermal stability and mechanical properties of silicone rubber materials. In recent years, with the emergence of new POSS, the performance of POSS/silicone rubber composites was constantly optimized and their applications were expanding. As a silicon flame retardant, POSS has obtained good application in silicone rubber insulation materials. The introduction of fluorinated POSS monomer into silicone rubber can significantly reduce the dielectric constant of silicone rubber, and the composite can be used as low dielectric materials with excellent properties. PDMS mixed matrix membranes (MMMs) using POSS as filler particles have advantages of organic and inorganic membranes, and high thermal stability. It has shown good application prospects in gas separation and bio-ethanol recovery from aqueous solutions, etc.
However,POSS molecules tend to crystallize at room temperature, which result in poor dispersion stability and affect the properties of compo-site. Large amount of studies have focused on the dispersibility of POSS in silicone rubber. According to the dispersion mechanism, the effects of process conditions and POSS type on dispersion were investigated. The relationship between dispersion and performance was studied, and signi-ficant results were obtained. In the future, more efforts should be made to clarify the dispersion mechanism of POSS in polymers and find ways to improve the dispersion stability.
In this paper, the preparation methods of POSS monomer and POSS/silicone rubber composite are summarized. In addition, the progress in properties of POSS/silicone rubber composite including mechanical properties, thermal stability, flame retardancy, dielectric properties and pervaporation is reviewed. The development trend of POSS/silicone rubber composite is also prospected. In the future, with the appearance of new POSS compounds and the progress of preparation process, the properties of POSS/silicone rubber composite would achieve greater improvement, and its application field would be further expanded.
Key words:  polyhedral oligomeric silsesquioxane    silicone rubber    composite    dispersion
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TQ333.93  
基金资助: 山东省重点研发计划项目(2019GGX102076;2019GGX102024;2019JZZY010350;2019JZZY010316);山东省科学院院地产学研协同创新基金(2018CXY-25)
作者简介:  王峰,2007年毕业于山东大学材料科学与工程学院,获得工学硕士学位,现为齐鲁工业大学(山东省科学院)新材料研究所以及山东省特种含硅新材料重点实验室助理研究员。主要从事有机硅材料的制备与应用研究。
引用本文:    
王峰, 彭丹, 牟秋红, 张方志, 李冰, 张硕, 于一涛, 李金辉, 赵宁. 笼型低聚倍半硅氧烷/硅橡胶复合材料的制备及性能进展[J]. 材料导报, 2020, 34(21): 21188-21198.
WANG Feng, PENG Dan, MU Qiuhong, ZHANG Fangzhi, LI Bing, ZHANG Shuo, YU Yitao, LI Jinhui, ZHAO Ning. Progress in Preparation and Properties of POSS/Silicone Rubber Composite. Materials Reports, 2020, 34(21): 21188-21198.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080048  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21188
[1] Josdi M, Butola B. Journal of Macromolecular Science Part C Polymer Reviews, 2004, 44(4), 389.
[2] Cai H, Zhang X, Xu K, et al. Polymers for Advance Technologies, 2012, 23(4), 765.
[3] Kuo S, Chang F. Progress in Polymer Science, 2011, 36(12), 1649.
[4] Striolo A, Mccabe C, Cummings P T. Journal of Physical Chemistry B, 2005, 109(30), 14300.
[5] Sun Q J, Huang Y H, Wu N, et al.Silicone Material, 2018, 32(1), 71(in Chinese).
孙全吉, 黄艳华, 吴娜, 等. 有机硅材料, 2018, 32(1), 71.
[6] Sun X L, Liu C X, Xu X J, et al.Silicone Material, 2018, 32(1), 66(in Chinese).
孙希路, 刘春霞, 许鑫江, 等. 有机硅材料, 2018, 32(1), 66.
[7] He S J, Hu J B, Zhang C, et al. Polymer Testing, 2018, 67, 295.
[8] Liu T, Ma F G.China Synthetic Rubber Industry, 2014, 37(3), 230(in Chinese).
刘涛, 马凤国.合成橡胶工业, 2014, 37(3), 230.
[9] Cordes D B, Lickiss P D, Rataboul F.Chemical Reviews, 2010, 110(4), 2081.
[10] Chen D Z, Yi S P, Wu W B, et al.Polymer, 2010, 51(17), 3867.
[11] Zhang Z, Liang G, Wang X. Polymer International, 2014, 63(3), 552.
[12] Zhang Z, Liang G, Wang X, et al. High Performance Polymers, 2013, 25(4), 427.
[13] Blanco I, Bottino F A, Abate L. Thermochimica Acta, 2016, 623, 50.
[14] Zhang T, Zhang Q, Li T, et al.New Chemical Materials, 2013, 41(3), 82(in Chinese).
张韬毅, 张倩, 李滔, 等. 化工新型材料, 2013, 41(3), 82.
[15] Liu F, Guo H, Zhao Y, et al. Polymer Degradation and Stability, DOI:10.1016/j.polymdegradstab.2019.108959.
[16] Zhang J,Luo Z, Wang W, et al. Reactive and Functional Polymers, 2019, 140, 103.
[17] Xu H, Yang B, Gao X, et al.Journal of Applied Polymer Science, 2006, 101(6), 3730.
[18] Fan H, He J, Yang R. Journal of Applied Polymer Science, 2013, 127(1), 463.
[19] Liu Y, Zheng S, Nie K. Polymer, 2005, 46(25), 12016.
[20] Pan G, Mark J E, Schaefer D W. Journal of Polymer Science Part B Polymer Physics, 2003, 41(24), 3314.
[21] Liu Y F,Zhu Z Y,Huang A M.China Plastics Industry, 2016, 44(6), 106(in Chinese).
刘玉峰, 朱志勇, 黄安民.塑料工业, 2016, 44(6), 106.
[22] Liu L, Tian M, Zhang W, et al. Polymer, 2007, 48(11), 3201.
[23] Liu L, Ming T, Liang G H, et al. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2007, 44(7), 659.
[24] Joshi V, Srividhya M, Dubey M, et al. Journal of Applied Polymer Science, 2013, 130(1), 92.
[25] Liu L, Zhou Z, Ding X J, et al.China Synthetic Rubber Industry, 2007, 30(4), 270(in Chinese).
刘玲, 周铮, 丁雪佳, 等.合成橡胶工业, 2007, 30(4), 270.
[26] Zhang W, Liu D, Wang Y Q.China Synthetic Rubber Industry, 2005, 28(5), 369(in Chinese).
张纬, 刘丹, 王益庆, 等.合成橡胶工业, 2005, 28(5), 369.
[27] Fan J H, Zhang K, Wu J Y.China Rubber Industry, 2013, 60(4), 202(in Chinese).
范敬辉, 张凯, 吴菊英.橡胶工业, 2013, 60(4), 202.
[28] Lu X X, Li J, Zhang B T.New Chemical Materials, 2014, 42(6), 203(in Chinese).
卢秀娴, 李坚, 张保坦.化工新型材料, 2014, 42(6), 203.
[29] Fan J H, Zhang K, Wu J Y.Silicone Material, 2011, 25(5), 318(in Chinese).
范敬辉, 张凯, 吴菊英. 有机硅材料, 2011, 25(5), 318.
[30] Sirin H, Kodal M, Karaagac B, et al.Composites Part B: Engineering, 2016, 98, 370.
[31] Yang D, Zhang W, YAO R L, et al. Polymer Degradation and Stability, 2013, 98(1), 109.
[32] Ling F W, Zhang D, Li Z H, et al. China Synthetic Rubber Industry, 2016, 39(6), 438(in Chinese).
凌方唯, 张典, 李泽华, 等.合成橡胶工业, 2016, 39(6), 438.
[33] Xue L Z, Lin X D, Ma W S, et al.Silicone Material, 2013, 27(6), 419(in Chinese).
薛亮忠, 林晓丹, 马文石, 等. 有机硅材料, 2013, 27(6), 419.
[34] Chen D Z, Yi S P, Fang P F, et al. S Reactive and Functional Polymers, 2011, 71(4), 502.
[35] Chen D Z, Liu Y, Huang C.Polymer Degradation and Stability, 2012, 97(3), 308.
[36] Chen D Z, Liu Y, zhang H W, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(6), 1375.
[37] Chen D Z, Nie J R, Yi S P, et al.Polymer Degradation and Stability, 2010, 95(4), 618.
[38] Zhang Y F, Mao Y Y, Chen D Z, et al. Polymer Degradation and Stability, 2013, 98(4), 916.
[39] Diao S, Dong F Y, Meng J, et al. Materials Chemistry and Physics, 2015, 153, 161.
[40] Dong F Y, Diao S, Ma D P, et al. Reactive and Functional Polymers, 2015, 96(96), 14.
[41] Dong F Y, Ma D P, Feng S Y.Polymer Testing, 2016, 52, 124.
[42] Dong F Y, Zhao P J, Dou R T, et al. Materials Chemistry and Physics, 2018, 208, 19.
[43] Ryu H, Kim D, Lee J, et al. Polymer, 2010, 51(11), 2296.
[44] Liu Y F, Shi Y H, Zhang D, et al. Polymer, 2013, 54(22), 6140.
[45] Zhao M, Feng Y K, Li Y, et al.Journal of Macromolecular Science Part A, 2014, 51(8), 639.
46 Zhang D, Shi Y H, Liu Y F, et al. RSC Advances, 2014, 4(78), 41364.
[47] Zhang D, Huang G S, Shi Y H, et al.Journal of Applied Polymer Science, DOI: 10.1002/app.42173.
[48] Zhang D, Liu Y F, Shi Y H, et al. RSC Advances, 2014, 4(12), 6275.
[49] Mishra K, Pandey G, Singh R P. Polymer Testing, 2017, 62, 210.
[50] Zhang W, Li Y Z, Geng H P, et al. Special Purpose Rubber Products, 2005, 26(5), 4(in Chinese).
张纬, 李延昭, 耿海萍, 等. 特种橡胶制品, 2005, 26(5), 4.
[51] Cao X X, Fan B B, He X F, et al.China Plastics, 2011(2), 13(in Chinese).
曹新鑫, 樊斌斌, 何小芳, 等.中国塑料, 2011(2), 13.
[52] Zhao S G, Feng S Y.Journal of Applied Polymer Science, 2003, 88(14), 3066.
[53] Sun J, Kong J, He C.Journal of Applied Polymer Science, DOI: 10.1002/app.46996.
[54] Wu Y L, Bai Y L, Zhang J P. Science of Advanced Materials, 2014, 6(6), 1244
[55] Lewicki J P, Liggat J J, Pethrick R A, et al.Polymer Degradation and Stability, 2008, 93(1), 158.
[56] Fan H B, Yang R J. Journal of Thermal Analysis and Calorimetry, 2014, 116(1), 349.
[57] Liu Y R, Huang Y D, Liu L.Polymer Degradation and Stability, 2006, 91(11), 2731.
[58] Liu Y R, Huang Y D, Liu L. Composites Science and Technology, 2007, 67(13), 2864.
[59] Liu Y R, Huang Y D, Liu L. Journal of Materials Science, 2007, 42(14), 5544.
[60] Ogliani E, Yu L, Mazurek P, et al.Polymer Degradation and Stability, 2018, 157, 175.
[61] Mu Q H, Peng D, Wang F, et al. Key Engineering Materials, 2017, 753, 50.
[62] Wu T Y, Qiu J D, Lai X J, et al.Polymer Degradation and Stability, 2019, 159, 163.
[63] Zhang W C, Camino G, Yang R J. Progress in Polymer Science, 2017, 67, 77.
[64] Yang N, Zeng Z, Wang X F, et al.Polymer Bulletin, 2012(12), 50(in Chinese).
杨娜, 曾智, 王雪飞, 等. 高分子通报, 2012(12), 50.
[65] Zhang Y, He J Y, Yang R J. Polymer Degradation and Stability, 2016, 125, 140.
[66] Yuan Z L. Preparation and application properties of new POSS flame retardants.Master's Thesis, Shanghai University of Engineering Science, China, 2016(in Chinese).
袁章林. 新型POSS阻燃剂的制备及其应用性能研究. 硕士学位论文, 上海工程技术大学, 2016.
[67] Jiang B Z. Study on silicone-rubber based insulaton material and application of POSS.Master's Thesis, National University of Defense Technology, China, 2011(in Chinese).
姜本正. 硅基绝热材料配方及POSS的应用探索研究. 硕士学位论文, 国防科学技术大学, 2011.
[68] Li Q, Peng P, Chen G X, et al. Journal of Materials Chemistry C, 2014, 2(39), 8216.
[69] Xu H Y, Yan Z Q, Zhang C, et al.Chemical Journal of Chinese Universities, 2011, 32(9), 1962(in Chinese).
徐洪耀, 严正权, 张超, 等.高等学校化学学报, 2011, 32(9), 1962.
[70] Zhang C, Guang S Y, Zhu X B, et al.The Journal of Physical Chemistry C, 2010, 144(51), 22455.
[71] Chen F, Wang R, Li Y, et al.Adhesion, 2015(10), 37(in Chinese).
陈凡, 王瑞, 李言, 等.粘接, 2015(10), 37.
[72] Zhong X, Meng X D, Zhang R H, et al. Acta Materiae Compositae Sinica, DOI: 10.13801/j.cnki.fhclxb. 20190122.001(in Chinese).
钟洨, 孟旭东, 张睿涵, 等.复合材料学报, DOI: 10.13801/j.cnki.fhclxb.20190122.001.
[73] Xin Y M, Wang J J, Jin K K, et al. Macromolecular Chemistry and Phy-sics, DOI: 10.1002/macp.201700010.
[74] Iacob M, Bele A, Airinei A, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2017, 522, 66.
[75] Farno E, Rezakazemi M, Mohammadi T, et al. Polymer Engineering and Science, 2013, 54(1), 215.
[76] Marchetti P, Solomon M F, Szekely G, et al. Chemical Reviews, 2014, 114(21), 10735.
[77] Naik P V, Bernstein R, Vankelecom I.Journal of Applied Polymer Science, 2016, 133(28), 43670.
[78] Madhavan K, Reddy B. Journal of Membrane Science, 2009, 342, 291.
[79] Isayeva I S, Kennedy J. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42, 4337.
[80] Rezakazemi M, Vatani A, Mohammadi T. Journal of Natural Gas Science and Engineering, 2016, 30, 10.
[81] Zhang Q G, Fan B C, Liu Q L, et al. Journal of Membrane Science, 2011, 366(1/2), 335.
[82] Mao H, Zhen H, Ahmad A, et al. Journal of Membrane Science, 2019, 582, 307.
[83] Liu G P, Hung W, Shen J, et al.Journal of Materials Chemistry A, 2015, 3, 4510.
[84] Zhan X, Lu J, Xu H L, et al. Applied Surface Science, 2019, 473, 785.
[85] Chen C Y, Pu N W, Liu Y M, et al. Composites Part B: Engineering, 2018, 135, 119.
[1] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[2] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
[5] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[6] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[7] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[8] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[9] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[10] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[11] 曹飞, 陈杰, 林泽力. 基于小波能量谱和信息熵的复合材料结构损伤诊断[J]. 材料导报, 2020, 34(Z1): 476-479.
[12] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[13] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[14] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[15] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed