Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 10-17    https://doi.org/10.11896/j.issn.1005-023X.2017.01.002
  材料综述 |
溶胶-凝胶法制备铜锌锡硫材料的研究进展
韩 贵,陆金花,王 敏,李丹阳
扬州大学化学化工学院,扬州 225002
Materials of Cu2ZnSnS4 (CZTS) Prepared by Sol-Gel Method:A Review
HAN Gui, LU Jinhua, WANG Min, LI Danyang
College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002
下载:  全 文 ( PDF ) ( 1625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 四元硫化物铜锌锡硫(CZTS)是一种新型薄膜太阳电池材料,具有锌黄锡矿结构,呈p型导电性,带隙约为1.5 eV,光学吸收系数高于104 cm-1,这些特性与太阳光谱相匹配。基于上述原因,CZTS薄膜是一种有望能低成本、可规模化开发利用的新型薄膜太阳电池材料。简要阐述了CZTS性质及其薄膜太阳能电池的器件结构,详细介绍了溶胶-凝胶方法制备CZTS薄膜及其相应器件效率的研究进展。最后,总结了此方法制备CZTS薄膜及其相关电池性能难以突破的关键技术问题,并提出了有效的改进措施,对CZTS薄膜太阳电池未来的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩 贵
陆金花
王 敏
李丹阳
关键词:  铜锌锡硫  太阳能电池  溶胶-凝胶法  效率  性能    
Abstract: A quaternary chalcogenide-based compound Cu2ZnSnS4 (CZTS) is a novel material for thin film solar cell, posses-sing kesterite structure, p-type conductivity, a band gap energy of about 1.5 eV and an absorption coefficient of higher than 104 cm-1, which match well with the solar spectrum. Based on the above reasons, CZTS thin film is expected to be a new material for thin film solar cell, which can lower the cost and be developed and utilized in large scale. The property and device structure of CZTS thin film solar cell are elaborated. In addition, the preparation of CZTS thin film by sol-gel method and the research progress in the corresponding device performance are also investigated in detail. Finally, the key strategies of this technique, as well as the effective improvement measure are pointed out, and the future study direction of CZTS thin film solar cells is proposed.
Key words:  Cu2ZnSnS4    solar cells    sol-gel method    efficiency    performance
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  O649.4  
  TB43  
  TB333  
  TM23  
  TN304.2  
基金资助: 科研启动金(5010/137010161);扬州大学优势学科(081301)
作者简介:  韩贵:男,1979年生,博士,副教授,主要从事光电转换材料方面的研究 E-mail: hangui@yzu.edu.cn 陆金花:女,硕士研究生,主要从事新能源材料的研究 E-mail:544643705@qq.com
引用本文:    
韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
HAN Gui, LU Jinhua, WANG Min, LI Danyang. Materials of Cu2ZnSnS4 (CZTS) Prepared by Sol-Gel Method:A Review. Materials Reports, 2017, 31(1): 10-17.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.002  或          http://www.mater-rep.com/CN/Y2017/V31/I1/10
1 Katagiri H, Sasaguchi N, Hoshino S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Solar Energy Mater Solar Cells,1997,49(1-4):407.
2 Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells[J]. J Am Chem Soc,2009,131(33):11672.
3 Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv Energy Mater,2014,4(7):13014651.
4 Fan Yong, Qin Honglei, Mi Baoxiu, et al. Progress in the fabrication of Cu2ZnSnS4 thin film for solar cells[J]. Acta Chim Sinica,2014,72(6):643(in Chinese).
范勇,秦宏磊,密保秀,等.太阳能电池材料-铜锌锡硫化合物薄膜制备及器件应用研究进展[J]. 化学学报,2014,72(6):643.
5 Katagiri H, Jimbo K, Yamada S, et al. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique[J]. Appl Phys Exp,2008,1(4):041201.
6 Tanaka K, Oonuki M, Moritake N, et al. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing[J]. Solar Energy Mater Solar Cells,2009,93(5):583.
7 Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route[J]. Thin Solid Films,2009,517(7):2481.
8 Dai P C, Zhang Y H, Xue Y M, et al. Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum dot sensitized solar cell[J]. Mater Lett,2015,158(1):198.
9 Gecys P, Markauskas E, Gedvilas M, et al. Ultrashort pulsed laser induced material lift-off processing of CZTSe thin-film solar cells [J]. Solar Energy,2014,102(4):82.
10 Yoo H, Kim J H. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films[J]. Thin Solid Films,2010,518(22):6567.
11 Washio T, Shinji T, Tajima S, et al. 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD[J]. J Mater Chem,2012,22(9):4021.
12 Tunuguntla V, Chen W C, Shih P H, et al. A nontoxic solvent based sol-gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells[J]. J Mater Chem A,2015,3(29):15324.
13 Ahmed S, Reuter K B, Gunawan O, et al. A high efficiency electrodeposited Cu2ZnSnS4 solar cell[J]. Adv Energy Mater,2012,2(2):253.
14 Zhou Z H, Wang Y Y, Xu D, et al. Fabrication of Cu2ZnSnS4 screen printed layers for solar cells[J]. Solar Energy Mater Solar Cells,2010,94(12):2042.
15 Sun Kaiwen, Su Zhenghua, Han Zili, et al. Fabrication of flexible Cu2ZnSnS4(CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method[J]. Acta Phys Sin,2014,63(1):0188011(in Chinese).
孙凯文,苏正华,韩自力,等.连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[J].物理学报,2014,63(1):0188011.
16 Nguyen T H, Septina W, Fujikawa S, et al. Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique[J]. RSC Adv,2015,5(95):77565.
17 Nandur A, White B. Growth of Cu2ZnSnS4(CZTS) by pulsed laser deposition for thin film photovoltaic absorber material[C]// Phenomenology of Current-induced Spin-orbit Torques: APS March Meeting. Denver, Colorado:Bulletin of the American Physical Socie-ty, 2014: F24.003.
18 Shin B, Gunawan O, Zhu Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog Photovolt: Res Appl,2013,21(1):72.
19 Leitao J P, Santos N M, Fernandes P A, et al. Study of optical and structural properties of Cu2ZnSnS4 thin films[J]. Thin Solid Films,2011,519(21):7390.
20 Xu Jiaxiong, Yao Ruohe. Investigation of the photovoltaic perfor-mance of n-ZnO∶Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell[J]. Acta Phys Sin,2012,61(18):1873041(in Chinese).
许佳雄,姚若河.n-ZnO∶Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析[J].物理学报,2012,61(18):1873041.
21 Ge J, Chu J H, Jiang J C, et al. Characteristics of in-substituted CZTS thin film and bifacial solar cell[J]. ACS Appl Mater Int,2014,6(23):21118.
22 若木守明.光学材料手册[M].北京:化学工业出版社,2010:261.
23 Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics[J]. J Am Chem Soc,2009,131(35):12554.
24 Scragg J J. Copper zinc tin sulfide thin films for photovoltaics: Synthesis and characterisation by electrochemical methods[D]. UK: University of Bath; Springer,2011.
25 Salas-Villasenor A L, Mejia I, Sotelo-Lerma M, et al. Performance and stability of solution-based cadmium sulfide thin film transistors: Role of CdS cluster size and film composition[J]. Appl Phys Lett,2012,101(26):2621031.
26 Sahay P P, Nath R K, Tewari S. Optical properties of thermally evaporated CdS thin films[J]. Cryst Res Technol,2007,42(3):275.
27 Cortes A, Gomez H, Marotti R E, et al. Grain size dependence of the bandgap in chemical bath deposited CdS thin films[J]. Solar Energy Mater Solar Cells,2004,82(1-2):21.
28 Shirakata S, Ohkubo K, Ishii Y, et al. Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells[J]. Solar Energy Mater Solar Cells,2009,93(6-7):988.
29 Ullrich B, Sakai H, Segawa Y. Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition[J]. Thin Solid Films,2001,385(1):220.
30 Sasikala G, Dhanasekaran R, Subramanian C. Electrodeposition and optical characterisation of CdS thin films on ITO-coated glass[J]. Thin Solid Films,1997,302(1-2):71.
31 Detlev R, Stefan G, Salvador B, et al. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation[J]. Appl Optics,2002,41(16):3196.
32 Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors[J]. Solar Energy Mater Solar Cells,2007,91(13):1199.
33 黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005:55.
34 Wang Juan, Li Chen, Xu Bo. Basic principle, advance and current application situation of sol-gel method[J]. Chem Ind Eng,2009,26(3):273(in Chinese).
王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状[J].化学工业与工程,2009,26(3):273.
35 Mitzi D B, Todorov T K, Gunawan O, et al. Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices[C]//35th IEEE Photovoltaic Specialists Conference(PVSC). Honolulu, Hawaii, USA: IEEE,2010:000640.
36 Barkhouse D A R, Gunawan O, Gokmen T, et al. Device characte-ristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Prog Photovolt,2012,20(1):6.
37 Guo Q J, Ford G M, Yang W C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals[J]. J Am Chem Soc,2010,132(49):17384.
38 Fischereder A, Rath T, Haas W, et al. Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide[J]. Chem Mater,2010,22(11):3399.
39 Tanaka K, Fukui Y, Moritake N, et al. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency[J]. Solar Energy Mater Solar Cells,2011,95(3):838.
40 Maeda K, Tanaka K, Fukui Y, et al. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol-gel sulfurization[J]. Solar Energy Mater Solar Cells,2011,95(10):2855.
41 Ki W,Hillhouse H W.Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Adv Energy Mater,2011,1(5):732.
42 Todorov T, Gunawan O, Chey S J, et al. Progress towards marke-table earth-abundant chalcogenide solar cells[J]. Thin Solid Films,2011,519(21):7378.
43 Su Z, Yan C, Tang D, et al. Fabrication of Cu2ZnSnS4 nanowires and nanotubes based on AAO templates[J]. Cryst Eng Comm,2012,14(3):782.
44 Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells[J]. Energy Environ Sci,2012,5(1):5340.
45 Yang W, Duan H S, Bob B, et al. Novel solution processing of high-efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells[J]. Adv Mater,2012,24(47):6323.
46 Iiari G M, Fella C M, Ziegler C, et al. Cu2ZnSnSe4 solar cell absorbers spin-coated from amine-containing ether solutions[J]. Solar Energy Mater Solar Cells,2012,104:125.
47 Wada T, Kohara N, Nishiwaki S, et al. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells[J]. Thin Solid Films,2001,387(1):118.
48 Cho J W, Ismail A, Park S J, et al. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell application[J]. ACS Appl Mater Interfaces,2013,5(10):4162.
49 Park H, Hwang Y H, Bae B S. Sol-gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization[J]. J Sol-Gel Sci Techn,2013,65(1):23.
50 Kahraman S, Cetinkaya S, Podlogar M, et al. Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films[J]. Ceram Int,2013,39(8):9285.
51 Wang G, Zhao W G, Cui Y, et al. Fabrication of a Cu2ZnSn(S,Se)4 photovoltaic device by a low-toxicity ethanol solution process[J]. ACS Appl Mater Interfaces,2013,5(20):10042.
52 Todorov T K, Tang J, Bag S, et al. Beyond 11% efficiency: Cha-racteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells[J]. Adv Energy Mater,2013,3(1):34.
53 Zhang K Z, Tao J H, He J, et al. Composition control in Cu2Zn-SnS4 thin films by a sol-gel technique without sulfurization[J]. J Mater Sci:Mater Electron,2014,25(6):2703.
54 Tong Z F, Yan C, Su Z H, et al. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin films solar cells[J]. Appl Phys Lett,2014,105(22):2239031.
55 Katagiri H, Jimbo K, Tahara M, et al. The influence of the composition ratio on CZTS-based thin film solar cells[C] // MRS Procee-dings. San Francisco: Materials Research Society,2009:1165.
56 Su Z H, Sun K W, Han Z L, et al. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route[J]. J Mater Chem A,2014,2(2):500.
57 Zhang K, Su Z H, Zhao L B, et al. Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization[J]. Appl Phys Lett,2014,104(14):1411011.
58 Kahraman S, etinkaya S, etinkara H A, et al. Effects of diethanolamine on sol-gel-processed Cu2ZnSnS4 photovoltaic absorber thin films[J]. Mater Res Bull,2014,50:165.
59 Zhao W, Wang G, Tian Q, et al. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source[J]. ACS Appl Mater Interfaces,2014,6(15):12650.
60 Li J V, Kuciauskas D, Yong M R, et al. Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells[J]. Appl Phys Lett,2013,102(16):1639051.
61 Wang J, Zhang P, Song X F, et al. Sol-gel nanocasting synthesis of kesterite Cu2ZnSnS4 nanorods[J]. RSC Adv,2015,5(2):1220.
62 Su Z H, Tan J M R, Li X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Adv Energy Mater,2015,5(19):15006821.
63 Agawane G, Shin S W, Vanalakar S A, et al. Synthesis of simple, low cost and benign sol-gel Cu2ZnSnS4 thin films: Influence of diffe-rent annealing atmospheres[J]. J Mater Sci-Mater El,2015,26(3):1900.
64 Agawane G L, Kamble A S, Vanalakar S A, et al. Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol-gel technique[J]. Mater Lett,2015,158:58.
65 Zhang R H, Szczepaniak S M, Carter N J, et al. A versatile solution route to efficient Cu2ZnSn(S,Se)4 thin-film solar cells[J]. Chem Mater,2015,27(6):2114.
66 Werner M, Sutter-Fella C M, Romanyuk Y E, et al. 8.3% efficient Cu2ZnSn(S,Se)4 solar cells processed from sodium-containing solution precursors in a closed reactor[J]. Thin Solid Films,2015,582:308.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 卢刚, 杨振英, 何凤琴, 郑璐, 钱俊, 封先锋, 高嘉庆. N型背接触异质结太阳电池背面结构参数优化[J]. 材料导报, 2019, 33(z1): 45-49.
[4] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[5] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[6] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[7] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[8] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[9] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[10] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[11] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[12] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[13] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[14] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[15] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed