Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1338-1343    https://doi.org/10.11896/j.issn.1005-023X.2018.08.025
  材料研究 |
PLV85540型氟醚橡胶的单体组成、分子链结构和热学性能
李东翰, 廖明义
大连海事大学交通运输工程学院,大连 116026
Monomers Composition, Molecular Chain Structures and Thermal Properties of PLV85540 Fluoroelastomer
LI Donghan, LIAO Mingyi
Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026
下载:  全 文 ( PDF ) ( 1146KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用红外(FTIR)、氢谱核磁(1H-NMR)、氟谱核磁(19F-NMR)和凝胶渗透色谱(GPC)对PLV85540型氟醚橡胶的单体组成和分子链结构进行了系统分析和计算,采用热失重分析(TGA)和差示扫描量热法(DSC)对其热学性能进行了测试。在分析与测试的基础上,明确了PLV85540型氟醚橡胶的组成结构和氟醚单体对其热学性能的影响。结果表明,PLV85540型氟醚橡胶是由偏氟乙烯(VDF)、四氟乙烯(TFE)、全氟甲基乙烯基醚(MVE)、全氟烷氧基乙烯基醚(MOVE)和含乙烯基的硫化点单体(c.s.m)组成的五元共聚物。经计算可知,VDF含量约为57.3%,TFE含量约为20.5%,MVE含量约为6.5%,MOVE含量约为15.6%,c.s.m含量约为0.1%。MOVE的加入使PLV85540型氟醚橡胶的耐低温性能进一步提升,玻璃化转变温度可达-40 ℃;同时,由于主链中的结构并未被破坏,所以其热稳定性也得到了保持,热分解温度为430 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李东翰
廖明义
关键词:  氟醚橡胶  单体组成  分子链结构  热学性能    
Abstract: The monomers composition and molecular chain structures of PLV85540 fluoroelastomer were systematically analyzed and investigated by attenuated total reflectance/Fourier transform infrared (ATR-FTIR),1H nuclear magnetic resonance (NMR),19F-NMR spectroscopy and gel permeation chromatography (GPC); thermal properties of it was experimentally measured by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) in this paper. Based on these analyses and calculations, we clearly defined its microstructures and effect of fluoroether monomer on its thermal properties. The results revealed that PLV85540 is a kind of five-membered copolymer, which composites by vinylidene fluoride (VDF), tetrafluoroethylene (TFE), perfluoromethyl vinyl ether (MVE), perfluoroalkoxy vinyl ether (MOVE) and the cure site monomer (c.s.m, contain double bond). After calculations, it can be seen that the VDF content is about 57.3%, the TFE content is about 20.5%, the MVE content is about 6.5%, the MOVE content is about 15.6% and c.s.m content is about 0.1%. Due to the addition of MOVE, the low temperature resistance of PLV85540 is further improved, and the glass transition temperature is about -40 ℃. At the same time, since the chain structures is not been destroyed, the thermal stability is maintained and its thermal decomposition temperature is about 430 ℃.
Key words:  fluoroelastomer    monomers composition    molecular chain structure    thermal property
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TQ333.93  
基金资助: 国家国际科技合作专项(2015DFR40500)
作者简介:  李东翰:男,1987年生,博士研究生,主要从事含氟聚合物的合成、官能化及其性能评价等研究 廖明义:男,1962年生,博士,教授,博士研究生导师,主要从事新型功能高分子材料、元素杂化聚合物及氟、硅聚合物的合成和应用等研究 E-mail:liaomy2000@sohu.com
引用本文:    
李东翰, 廖明义. PLV85540型氟醚橡胶的单体组成、分子链结构和热学性能[J]. 《材料导报》期刊社, 2018, 32(8): 1338-1343.
LI Donghan, LIAO Mingyi. Monomers Composition, Molecular Chain Structures and Thermal Properties of PLV85540 Fluoroelastomer. Materials Reports, 2018, 32(8): 1338-1343.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.025  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1338
1 Li D H, Qi S C, Zhang X A, et al. Preparation, functionalization and properties of low molecular fluoropolymers[J].Progress in Chemistry,2016,28(5):673(in Chinese).
李东翰,齐士成,张孝阿,等.低分子量含氟聚合物的制备、官能化及特性[J].化学进展,2016,28(5):673.
2 Robert C K. Handbook of Specialty Elastomers[M].New York:Taylor & Francis Group,2008:133.
3 Maclachlan J D. Fluorocarbon elastomers: A technical review[J].Polymer-plastics Technology and Engineering,1978,11:41.
4 Li F P, Bian J F, Zhang H Y. Study on structures and properties of fluororubber of improved low temperature property[J].Journal of Materials Engineering,1998(10):22(in Chinese).
栗付平,边俊峰,张洪雁.耐低温氟醚橡胶结构和基本物理性能研究[J].材料工程,1998(10):22.
5 Li Z H, Yang J Y, Kong J. Fluoroether rubbers and products[J].Special Purpose Rubber Products,2010,31(6):69(in Chinese).
李振环,杨家义,孔建.全氟醚橡胶及其制品[J].特种橡胶制品,2010,31(6):69.
6 Zhao Y Y, Bai J, Wu Y Q. Effect of perfluoromethyl vinylether(PMVE) content on property of fluoroether rubber[J].New Chemical Materials,2015,43(6):94(in Chinese).
赵媛媛,白鲸,伍永强.全氟甲基乙烯基醚(PMVE)含量对氟醚橡胶性能的影响[J].化工新型材料,2015,43(6):94.
7 Li F P, Bian J F, Zhang H Y. The present and development of fluororubber improved low temperature flexibility[J].Elastomerics,1997(3):44(in Chinese).
栗付平,边俊峰,张洪雁.耐低温氟醚橡胶的现状和发展[J].弹性体,1997(3):44.
8 Xiao F L. Kalrez® applications in the semiconductor industry[J].World Rubber Industry,2007,34(2):1(in Chinese).
肖风亮.Kalrez®在半导体工业中的应用[J].世界橡胶工业,2007,34(2):1.
9 Li Z H. Performance and application of perfluoroelastomers[J].Fluidmachinery,2006,34(12):52(in Chinese).
李振环.全氟醚橡胶的性能及应用[J].流体机械,2006,34(12):52.
10 Qian B Z. Developments of fluororubber at home and abroad[J].China Rubber,2008(7):14(in Chinese).
钱伯章.氟橡胶的国内外发展现状[J].中国橡胶,2008(7):14.
11 Qin W C. The production, application situation and development trend of fluoroelastomer[J].Chemical Propellants & Polymeric Materials,2005(4):25(in Chinese).
秦伟程.氟橡胶生产、应用现状与发展趋势[J].化学推进剂与高分子材料,2005(4):25.
12 Zhang H. Research on the performance of perfluorinated ether rubber[J].China Rubber/Plastics Technology and Equipment,2015(3):29(in Chinese).
张亨.全氟醚橡胶的性能研究进展[J].橡塑技术与装备,2015(3):29.
13 Zhang J X, Li B, Lan J, et al. The effect of various comonomer on character of the fluoroether rubber having resistance to low temperatures[J].New Chemical Materials,2011,39(1):122(in Chinese).
张建新,李斌,兰军,等.各种单体对耐低温氟醚橡胶性能的影响[J].化工新型材料,2011,39(1):122.
14 Wang Z, Li F P, Bian J F, et al. Study on structure and high-low temperature properties of fluoroether rubber[J].World Rubber Industry,2005,32(9):3(in Chinese).
王珍,栗付平,边俊峰,等.氟醚橡胶的结构和高低温性能研究[J].世界橡胶工业,2005,32(9):3.
15 Liu H C, Wu L J, You Y S, et al. Property and application of fluoroether rubber[J].New Chemical Materials,2007,35(4):11(in Chinese).
柳洪超,吴立军,尤瑜生,等.氟醚橡胶的性能及其应用[J].化工新型材料,2007,35(4):11.
16 Li J L, Deng Y, Song Y L, et al. Study on structure characteristics of fluoroether rubber which having resistance to low temperature[J].Chemical Production and Technology,2016,23(3):22(in Chinese).
李俊玲,邓艳,宋亦兰,等.1种耐低温氟醚橡胶的结构特征研究[J].化工生产与技术,2016,23(3):22.
17 Yang G C, Ju Z J, Ren L Y, et al. Study on low temperature properties of fluoroelastomer[J].Special Purpose Rubber Products,2010,31(5):29(in Chinese).
杨高潮,巨增奖,任丽颖,等.氟橡胶低温性能研究[J].特种橡胶制品,2010,31(5):29.
18 Ma W C, Du H T, Du M X, et al. Resent development on low-temperature modification of fluorine rubber[J].Aerospace Materials & Technology,2016(3):7(in Chinese).
马伟超,杜华太,杜明欣,等.氟橡胶低温性能改进研究进展[J].宇航材料工艺,2016(3):7.
19 Zhao Y F, Wu F D, Ren S Y. Properties, processing and application of chlorinated polyethylene rubber[J].Special Purpose Rubber Pro-ducts,2002(21):29(in Chinese).
赵云峰,吴福迪,任淑媛.新型氟醚橡胶密封材料[J].特种橡胶制品,2002(21):29.
20 Silverstein R M, Webster F X, Kiemle D J. Spectrometric identification of organic compounds, 7th ed.[M].New York:Taylor & Francis Group,2005.
21 Saint L R, Manseri A, Ameduri B, et al. Synthesis and properties of novel fluorotelechelic macrodiols containing vinylidene fluoride, hexafluoropropene and chlorotrifluoroethylene[J].Macromolecules,2002,35:1524.
22 Hugo E G, Vadim K, Abraham N. NMR chemical shifts of common laboratory solvents as trace impurities[J].Journal of Organic Che-mistry,1997,62:7512.
23 Taguet A, Ameduri B, Boutevin B. Grafting of commercially available amines bearing aromatic rings onto poly(vinylidene-co-hexa-fluoropropene) copolymers[J].Journal of Polymer Science Part A: Polymer Chemistry,2006,44:1855.
24 Gelin M P, Ameduri B. Radical solution copolymerisation of vinylidene fluoride with hexafluoropropene[J].Journal of Fluorine Chemistry,2005,126:577.
25 Ross G J, Watts J F, Hill MP, et al. Surface modification of poly(vinylidene fluoride) by alkaline treatment Part 2. Process modification by the use of phase transfer catalysts[J].Polymer,2001,42:403.
26 Li D H, Liao M Y. Preparation of telechelic hydroxyl low molecular weight fluoropolymers[J].Key Engineering Materials,2017,753:93.
27 Yuan C G, Hu C P, Xu X D, et al. Structure and properties of VDF/TFE/PMVE ternary copolymer[J].Acta Polymerica Sinica,2001(6):764(in Chinese).
袁才根,胡春圃,徐旭东,等.VDF/TFE/PMVE三元共聚物的结构与性能研究[J].高分子学报,2001(6):764.
28 Taguet A, Ameduri B, Boutevin B. Crosslinking of vinylidene fluo-ride-containing fluoropolymers[J].Advances in Polymer Science,2005,184:127.
29 Farrow P, Merli F. New low-temperature FKM for effective sealing in the chemical industry[J].Sealing Technology,2010,2010(1):8.
30 Triulzi F, Albano M, Stanga M. Fluoroelastomers: WO, 2007082867[P].2007-01-15.
31 Pianca M, Barchiesi E, Esposto G, et al. End groups in fluoropolymers[J].Journal of Fluorine Chemistry,1999,95:71.
32 Harald K, Klaus H, Guy V G,et al. Fluoroelastomers having low temperature characteristics and solvent resistance: US, 2004127661[P].2004-07-01.
33 Souzy R, Ameduri B, Ahsen S V, et al. Use of bis(trifluoromethyl)peroxy dicarbonate as initiator in the radical homopolymerisation of vinylidene fluoride (VDF) and copolymerisation of VDF with hexafluoropropylene[J].Journal of Fluorine Chemistry,2003,123:85.
34 Apostolo M, Triulzi F, Tortelli V, et al. Fluoroelastomers: US, 20060025528[P].2005-07-28.
35 Apostolo M, Triulzi F, Tortelli V, et al. Perfluoroelastomers: EP, 1621558[P].2006-01-02.
36 Li D H, Liao M Y. Dehydrofluorination mechanism, structure and thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment[J].Journal of Fluorine Chemistry,2017,201:55.
37 Pianca M, Bonardelli P, Tat M, et al. Composition and sequence distribution of vinylidene fluoride copolymer and terpolymer fluoroelastomers. Determination by19F nuclear magnetic resonance spectroscopy and correlation with some properties[J].Polymer,1987,28:224.
[1] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[2] 解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
[3] 张礼华,张云升,殷倩文. Li2O/K2O物质的量比对P2O5-Al2O3-BaO-Li2O-K2O磷酸盐玻璃热光性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1955-1958.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed