Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 23-28    https://doi.org/10.11896/j.issn.1005-023X.2017.05.004
  材料综述 |
质子交换膜燃料电池水管理动态模型研究*
陈海辉1, 郭秀艳2, 曾莹莹2, 马国金3
1 井冈山大学化学化工学院, 吉安 343009;
2 井冈山大学机电工程学院, 吉安 343009;
3 井冈山大学建筑工程学院, 吉安 343009
Study on Dynamic Models of Water Management in Proton Exchange Membrane Fuel Cell
CHEN Haihui1, GUO Xiuyan2, ZENG Yingying2, MA Guojin3
1 School of Chemistry & Chemical Engineering, Jinggangshan University, Ji’an 343009;
2 School of Mechanical & Electrical Engineering, Jinggangshan University, Ji’an 343009;
3 School of Building Engineering, Jinggangshan University, Ji’an 343009
下载:  全 文 ( PDF ) ( 1982KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水管理是质子交换膜燃料电池取得良好性能的关键因素之一,膜中水的含量及其分布的不均匀造成了电池性能下降。限于试验条件及测试技术,为了更好地探明电池中水的行为及分布,研究者们开展了大量的数学模型和仿真模拟。从质子交换膜燃料电池的工作原理角度出发,回顾了有关质子交换膜中水传递从一维模型到三维模型的发展历程,并阐述了各个阶段研究的要点、限定条件和主要的研究成果。同时,提出了未来水管理方面数学模型和仿真模拟发展的新方向。模型的完善有利于燃料电池控制策略的研究,这将为电池的优化设计提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海辉
郭秀艳
曾莹莹
马国金
关键词:  质子交换膜  水管理  数学模型    
Abstract: Appropriate water management in proton exchange membrane (PEM) is essential to achieve a high cell performance over a wide range of operating conditions. The content and uneven distribution of water causes the decrease of the fuel cell performance. Limitations related to the experimental conditions and techniques have motivated researchers to conduct computational mode-ling and simulation to better understand the behavior and distribution of water inside the cell. This paper reviews the working mechanism of PEM fuel cell, and the different mathematical models from one-dimensional model to three-dimensional models are employed. In addition, the focus of the study, the qualifications and main outcome of each research work are discussed. Moreover, the direction of the future simulations in water management is put forward. The model is conducive to the study of PEM fuel cell, which will provide the theoretical basis for the optimal design of fuel cell.
Key words:  proton exchange membrane    water management    computational modeling
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TM911.4  
基金资助: 国家自然科学基金(21561016);江西省教育厅科技计划项目(GJJ150775);江西省科技支撑项目(20133BBE50010;20122BBE500047);江西省对外科技合作计划重点项目(20142BDH80020)
通讯作者:  郭秀艳:,女,1980年生,博士,讲师,主要从事材料成型与工艺控制的研究 E-mail:yezi1616@163.com   
作者简介:  陈海辉:男,1968年生,博士,副教授,主要从事化学工程与工艺的研究
引用本文:    
陈海辉, 郭秀艳, 曾莹莹, 马国金. 质子交换膜燃料电池水管理动态模型研究*[J]. 《材料导报》期刊社, 2017, 31(5): 23-28.
CHEN Haihui, GUO Xiuyan, ZENG Yingying, MA Guojin. Study on Dynamic Models of Water Management in Proton Exchange Membrane Fuel Cell. Materials Reports, 2017, 31(5): 23-28.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.004  或          http://www.mater-rep.com/CN/Y2017/V31/I5/23
1 Arvay A, Ahmed A, Peng X H. Convergence criteria establishment for 3D simulation of proton exchange membrane fuel cell[J]. Int J Hydrogen Energ,2012,37:2482.
2 Cai Yuxing, Liu Shanshan, Fu Nian. Research progress on high-temperature proton exchange membranes[J]. Mater Rev: Rev,2016,30(6):57(in Chinese).
蔡聿星,刘闪闪,付念.高温质子交换膜的研究进展[J].材料导报:综述篇,2016,30(6):57
3 Bonghwan L, Kiwon P, Hyung-man Kim. Dynamic simulation of PEM water electrolysis and comparison with experiments[J]. Int J Electrochem Soc,2013,8:235.
4 Strahl S, Husar A, Serra M. Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell[J]. J Power Sources,2011,196:4251.
5 Arun Saco S, Thundil Karuppa Raj R, Karthikeyan P. A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique[J]. Energy,2016,113:558.
6 Li Ying, Zhou Qinwen, Zhang Xiangping. Numerical analysis of steady state self-humidification performance of PEMFC[J]. CIESC J,2014,65(5):1893(in Chinese).
李英,周勤文,张香平.质子交换膜燃料电池稳态自增湿性能分析[J].化工学报,2014,65(5):1893.
7 Sawada S I, Yamaki E, Ozawa T. Water transport in polymer electrolyte membranes investigated by dissipative particle dynamics simulation[J]. Electrochem Soc Trans,2010,33(1):1067.
8 Sergi J M, Kandlikar S G. Quantification and characterization of water coverage in PEMFC gas channels using simultaneous anode and cathode visualization and image processing[J]. Int J Hydrogen Energy,2011,36(19):12381.
9 Zhang Xinfeng, Zhang Tong. Review on water content measurement technology for PEM fuel cell[J]. Chin J Sci Instrument,2012,33(9):2151(in Chinese).
张新丰,章桐.质子交换膜燃料电池水含量实验测试方法综述[J].仪器仪表学报,2012,33(9):2151.
10 Akhtar N, Kerkhof P. Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode[J]. Int J Hydrogen Energy,2011,36:3076.
11 Springer T E, Zawodzinski A T, Gottesfeld S. Polymer electrolyte fuel cell model[J]. J Electrochem Soc,1991,138(8):2334.
12 Gurau V, Liu H T, Kakac S. Two-dimensional model for proton exchange membrane fuel cells[J]. AIChE J,1998,44:2410.
13 Wang Y, Basu S, Wang C Y. Modeling two-phase flow in PEM fuel cell channels[J]. J Power Sources,2007,179(2):603.
14 Hussaini I S, Wang C Y. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control[J]. J Power Sources,2010,195(12):3822.
15 Yang Chao, Wang Dongzhe. Research progress of surface modification of metallic bipolar plate for proton exchange membrane fuel Cell[J]. Mater Rev: Rev,2014,28(11):84(in Chinese).
杨超,王东哲.质子交换膜燃料电池用金属双极板表面改性的研究进展[J]. 材料导报:综述篇,2014,28(11):84.
16 Abdin Z, Webb E, Gray M. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. Int J Hydrogen Energy,2015,40:13243.
17 Tsushima S, Hirai S. In situ diagnostics for water transport in proton exchange membrane fuel cells[J]. Prog Energy Combust Sci,2011,37:204.
18 Springer T E, Wilson M S, Gottesfeld S. Modeling and experimental diagnostics in polymer electrolyte fuel cells[J]. J Electrochem Soc,1993,140:3515.
19 Morris D R, Sun X. Water-sorption and transport properties of Nafion 117[J]. J Appl Polym Sci,1993,50:1445.
20 Rakhshanpouri S, Rowshanzamir S. Water transport through a PEM (proton exchange membrane) fuel cell in a seven-layer model[J]. Energy,2013,50:220.
21 Ge Shanhai, Yi Baolian, Xu Hongfeng. Model of water transport for proton-exchange membrane fuel cell (PEMFC) [J]. J Chem Ind Eng,1999,50(1):39(in Chinese).
葛善海,衣宝廉,徐洪峰.质子交换膜燃料电池水传递模型[J].化工学报,1999,50(1):39.
22 Wang Cheng, Mao Zongqiang, Xu Jingming. Self-humidifying proton exchange membrane fuel cell at anode blockage operating—Performance and water distribution[J]. Chin J Power Sources,2003,27(5):413(in Chinese).
王诚,毛宗强,徐景明.阳极封闭式自增湿质子交换膜燃料电池——水分布及其性能[J].电源技术,2003,27(5):413
23 Hao L, Cheng P. Lattice Boltzmann simulation of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell[J]. J Power Sources,2010,195:3807.
24 Moriyama K, Inamuro T. Lattice Boltzmann simulations of water transport from the gas diffusion layer to the gas channel in PEFC[J]. Commun Comput Phys,2011,9:1206.
25 Chen L, Luan H B, He Y L. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields[J]. Int J Therm Sci,2012,51:132.
26 Molaeimanesh G R, Akbari M H. Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method[J]. Int J Hydrogen Energy,2014,39:8401.
27 Kim K N,Kang J H,Lee S G.Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells[J]. J Power Sources,2015,278:703.
28 Wang Y. Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells[J]. J Power Sources,2008,185:261.
29 Dokkar B, Settou N E, Imine O. Simulation of species transport and water management in PEM fuel cells [J]. Int J Hydrogen Energy,2011,36(6):4220.
30 Huang Y X, Cheng C H, Wang X D. Effects of porosity gradient in gas diffusion layers on performance of porton exchange membrane fuel cells [J]. Energy,2010,35:4786.
31 Devaraj V. Modeling, design, development, and control of a pilotacale continuous coating line for porton exchange membrane fuel cell electrode assembly[D]. Awstin: University of Texas at sustin,2012
32 Devaraj V, Lopez L F, Beaman J J. Model-based control of a continuous coating line for proton exchange membrane fuel cell electrode assembly[J]. Int J Chem Eng,2015,Article ID:572983.
33 Meyer J P, Newman J. Simulation of the direct methanol fuel cell: Ⅱ. Modeling and data analysis of transport and kinetic phenomena[J]. J Electrochem Soc,2002,149(6):A718.
34 Burnett D J,GarciaA R,Thielmann F.Measuring moisture sorption and diffusion kinetics on proton exchange membranes using a gravimetric vapor sorption apparatus[J]. J Power Sources,2006,160(1):426.
35 Carton J G, Olabi A G. Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates[J]. Energy,2016,2:1.
[1] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[2] 田响宇, 尚心莲, 李红霞, 王新福, 刘国齐, 杨文刚, 于建宾. 在内衬材料中添加氢氧化铝提升长水口的抗热震性:内衬材料显微组织与性能及长水口颈部最大热应力数学模型[J]. 材料导报, 2019, 33(4): 611-616.
[3] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[4] 闫二虎, 黄浩然, 刘贵仲, 班煜峰, 徐芬, 孙立贤. 一种氢渗透模型的构建及其在Nb基渗氢合金中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 725-729.
[5] 吕路强, 沈骏, 向路, 刘双翼, 谢雄, 周猛兵. 碳基纳米结构作为燃料电池催化剂载体的研究进展*[J]. 材料导报, 2017, 31(21): 9-18.
[6] 蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
[7] 郜雪松, 罗 锋, 杨叶华, 龚兴厚, 胡 涛, 吴崇刚. 杂多酸掺杂质子交换膜的制备、结构及性能[J]. 材料导报, 2017, 31(1): 30-42.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed