CORROSION AND PROTECTION OF MATERALS |
|
|
|
|
|
Research Progress of Stress Corrosion Cracking Behaviorof Pipeline Steel Under the Action of Biofilm |
XIE Fei1, WANG Xingfa1, WANG Dan1,SUN Dongxu1,2, QI Jianjing3
|
1 College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001; 2 College of Pipeline and CivilEngineering, China University of Petroleum, Qingdao 266580; 3 Oil & Gas Technology Research Instituteof Changqing Oilfield Company, Xi’an 710016 |
|
|
Abstract Biofilm is a kind of special microbial aggregates that adheres on the carrier’s surface and creates an unusual surface condition facilitating the stress corrosion of pipeline steel. In recent years the stress corrosion cracking behavior of pipeline steel under the action of biofilm has been studied as an academic research focus. This paper summarizes the mechanism of biofilm formation and stress corrosion cracking, as well as their influencing factors. It also outlines the research status over the synergistic effect of biofilm and stress on the corrosion behavior of pipeline steel, and provides a critical and prospective discussion for both current research and future trends.
|
Published: 10 May 2018
Online: 2018-07-06
|
|
|
|
1 Moreno D A, Ibars J R, Polo J L, et al. EIS monitoring study of the early microbiologically influenced corrosion of AISI 304L stainless steel condenser tubes in freshwater[J].Journal of Solid State Electrochemistry,2014,2(18):377. 2 Bai Z Q, Li H L, Liu D X, et al. Corrosion factors of N80 steel in simulated H2S/CO2 environment[J].Materials Protection,2003,36(4):32(in Chinese). 白真权,李鹤林,刘道新,等.模拟油田H2S/CO2环境中N80钢的腐蚀及影响因素研究[J].材料保护,2003,36(4):32. 3 Xu C M, Luo J H, Zhou Y, et al.Effect of SRB on stress corrosion cracking of X100 pipeline steel in northwest saline soil[J].Transactions of Materials and Heat Treatment,2016,37(5):82(in Chinese). 胥聪敏,罗金恒,周勇,等.SRB对X100管线钢在西北盐渍土壤中应力腐蚀开裂行为的影响[J].材料热处理学报,2016,37(5):82. 4 Fang J P. Case analysis of oil and gas pipeline accidents at home and abroad[J].Petro & Chemical Equipment,2016,19(9):90(in Chinese). 房剑萍.国内外油气管道事故案例分析[J].石油和化工设备,2016,19(9):90. 5 Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield[J].Corrosion Science and Protetion Technology,2015,27(1):7(in Chinese). 刘宏伟,刘宏芳,秦双,等.集输管线硫酸盐还原菌诱导生物矿化作用调查[J].腐蚀科学与防护技术,2015,27(1):7. 6 Mansfeld F. The interaction of bacteria and metal surfaces[J].Electrochimica Acta,2007,52(27):7670. 7 Ivleva N P, Kubryk P, Niessner R. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization[J].Analytical and Bioanalytical Chemistry,2017,409:4353. 8 Belkaid S, Ladjouzi M A, Hamdani S. Effect of biofilm on naval steel corrosion in natural seawater[J].Journal of Solid State Electrochemistry,2011,15(3):525. 9 Zuo R, rnek D, Syrett B C, et al. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water[J].Applied Microbiology and Biotechnology,2004,64(2):275. 10 Zuo R, Wood T K. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms[J].Applied Microbiology and Biotechnology,2004,65(6):747. 11 Flemming H C, Wingender J. The biofilm matrix[J].Nature Reviews Microbiology,2010,8(9):623. 12 Heyer A, D’Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view[J].Ocean Engineering,2013,70:188. 13 Mansouri H, Alavi S A, Fotovat M. Microbial-influenced corrosion of corten steel compared with carbon steel and stainless steel in oily wastewater by pseudomonas aeruginosa[J].JOM,2015,67(7):1594. 14 Sauer K, Camper A K, Ehrlich G D, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm[J].Journal of Bacteriology,2002,184(4):1140. 15 Soni K A, Balasubramanian A K, Beskok A, et al. Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media[J].Current Microbiology,2008,56(1):93. 16 Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili[J].Nature,1995,373(6510):164. 17 Ista L K, Fan H, Baca O, et al. Attachment of bacteria to model solid surfaces: Oligo(ethylene glycol) surfaces inhibit bacterial attachment[J].Fems Microbiology Letters,1996,142(1):59. 18 Hyde F W, Alberg M, Smith K. Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal[J].Journal of Industrial Microbiology & Biotechnology,1997,19(2):142. 19 Heistad A, Scott T, Skaarer A M, et al. Virus removal by unsaturated wastewater filtration: Effects of biofilm accumulation and hydrophobicity[J].Water Science and Technology,2009,60(2):399. 20 Truong V K, Rundell S, Lapovok R, et al. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria[J].Applied Microbiology and Biotechnology,2009,83(5):925. 21 Machado M C, Cheng D, Tarquinio K M, et al. Nanotechnology: Pediatric applications[J].Pediatric Research,2010,67(5):500. 22 Chung K K, Schumacher J F, Sampson E M, et al. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus[J].Biointerphases,2007,2(2):89. 23 Hochbaum A I, Aizenberg J. Bacteria pattern spontaneously on pe-riodic nanostructure arrays[J].Nano Letters,2010,10(9):3717. 24 Ma L, Conover M, Lu H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix[J].PLoS Pathogens,2009,5(3):e1000354. 25 Watnick P I, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm[J].Molecular Microbiology,1999,34(3):586. 26 Sutherland I W. The biofilm matrix-an immobilized but dynamic microbial environment[J].Trends in Microbiology,2001,9(5): 222. 27 Lasa I, Penadés J R. Bap: A family of surface proteins involved in biofilm formation[J].Research in Microbiology,2006,157(2):99. 28 Goodman S D, Obergfell K P, Jurcisek J A, et al. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins[J].Mucosal Immunology,2011,4(6):625. 29 Wu J, Xi C. Evaluation of different methods for extracting extracellular DNA from the biofilm matrix[J].Applied and Environmental Microbiology,2009,75(16):5390. 30 Qin Z, Ou Y, Yang L, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis[J].Micro-biology,2007,153(7):2083. 31 Bryers J D. Medical biofilms[J].Biotechnology and Bioengineering,2008,100(1):1. 32 Luo H. An analysis of the mechanism of SCC of pressure vessels and pressure pipes as well as the influencing factors of SCC[J].Guangdong Chemical Industry,2017,44(6):139(in Chinese). 罗汇果.压力容器和压力管道应力腐蚀开裂机理及影响因素分析[J].广东化工,2017,44(6):139. 33 Xian N.Study on evaluating SCC behavior and control methods of typical pipeline steel[D].Xi’an: Northwestern Polytechnical University,2007(in Chinese). 鲜宁.典型管线钢应力腐蚀行为评定及控制方法研究[D].西安:西北工业大学,2007. 34 褚武扬.氢脆和应力腐蚀[M].北京:科学出版社,2013. 35 Yang H Q, Duan Y F. Review on chloride stress corrosion cracking of austenitic stainless steels[J].Total Corrosion Control,2017,31(1): 13(in Chinese). 杨宏泉,段永锋.奥氏体不锈钢的氯化物应力腐蚀开裂研究进展[J].全面腐蚀控制,2017,31(1):13. 36 Fang Y W, Wu M, Chen X, et al. Research progress of hydrogen-induced cracking for pipeline steel[J].Hot Working Technology,2017(4):48(in Chinese). 范裕文,吴明,陈旭,等.管线钢氢致开裂研究现状[J].热加工工艺,2017(4):48. 37 褚武扬.断裂与环境断裂[M].北京:科学出版社,2000. 38 Jiang K M,Wu Q L. Preparation and electrochemical performance of activated carbon with high specific surface area[J].Journal of Functional Materials,2017,48(11):11153(in Chinese). 姜可茂,吴琪琳.高比表面积生物质活性炭的制备及其电化学性能研究[J].功能材料,2017,48(11):11153. 39 Liu X, Frankel G S. Effects of compressive stress on localized corrosion in AA2024-T3[J].Corrosion Science,2006,48(10):3309. 40 Guo H,Cai X,Yang W.The factors of mechanics and materials in-fluencing stress corrosion cracking of pipeline steels[J].Materials for Mechanical Engineering,2002,26(4):1(in Chinese). 郭浩,蔡殉,杨武.影响管线钢应力腐蚀破裂的力学和材料因素[J].机械工程材料,2002,26(4):1. 41 Niu L, Zhang C Q, Lin H C. Effect of strain rate and potential on stress corrosion crack propagation[J].Acta Physico-Chimica Sinica,2003,19(7):616(in Chinese). 牛林,张长桥,林海潮.应变速率和电位对应力腐蚀裂纹扩展的影响[J].物理化学学报,2003,19(7):616. 42 Parkins R N, Blanchard Jr W K, Delanty B S. Transgranular stress corrosion cracking of high-pressure pipelines in contact with solutions of near neutral pH[J].Corrosion,1994,50(5):394. 43 Ye C D, Kong D J, Zhang L. Effects of temperature on stress corrosion of X70 pipeline steel in solution with oxygen[J].Journal of Central South University (Science and Technology),2015,46(7):2432(in Chinese). 叶存冬,孔德军,张垒.温度对X70管线钢在含氧溶液中应力腐蚀的影响[J].中南大学学报(自然科学版),2015,46(7):2432. 44 Guo H, Li G F , Cai X, et al. Stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH solutions at different temperatures[J].Acta Metallurgica Sinica,2004,40(9):967(in Chinese). 郭浩,李光福,蔡珣,等.X70管线钢在不同温度近中性pH溶液中的应力腐蚀破裂行为[J].金属学报,2004,40(9):967. 45 Delanty B, O’Beirnel J. Major field study compare spipeline stres corosion cracking with coatings[J].Oil and Gas Journal,1992,90(24):39. 46 Cheng Y, Yu H Y, Wang Y, et al. Effect of strain rate on stress corrosion cracking of X80 pipeline steel[J].Journal of Materials Engineering,2013(3):77(in Chinese). 程远,俞宏英,王莹,等.应变速率对X80管线钢应力腐蚀的影响[J].材料工程,2013(3):77. 47 Wang S R, Du C W, Liu Z Y, et al. Field experimental study on stress corrosion cracking behavior of Q235 and X70 steels in Singapore soil[J].Journal of Mechanical Engineering,2015,51(12):30(in Chinese). 王胜荣,杜翠薇,刘智勇,等. Q235与X70钢在新加坡土壤中的应力腐蚀行为现场试验研究[J].机械工程学报,2015,51(12):30. 48 Liu Z, Du C, Zhang X, et al. Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J].Acta Metallurgica Sinica (English Letters),2013,4(26):489. 49 Du J. Main influence factors to sour corrosion resistance of pipeline steel and test method[J].Welded Pipe and Tube,2013, 36(11): 31(in Chinese). 董瑾.管线钢耐酸性腐蚀的主要影响因素及测试方法[J].焊管,2013,36(11):31. 50 Zhao B,Shou B N, Wang H K,et al. Research progress on the stress corrosion cracking of buried pipeline steel in soil environment[J]. China Special Equipment Safety,2014(s1):63(in Chinese). 赵博,寿比南,王汉奎,等.埋地管线钢在土壤环境中的埋地腐蚀与研究进展[J].中国特种设备安全, 2014(s1):63. 51 Zhang L, Li X G, Du C W, et al. Progress in study of factors affec-ting stress corrosion cracking of pipeline steels[J]. Corrosion Science and Protetion Technology,2009,21(1):62(in Chinese). 张亮,李晓刚,杜翠薇,等.管线钢应力腐蚀影响因素的研究进展[J].腐蚀科学与防护技术,2009,21(1):62. 52 Wang S W, Li Y, Wang L S. Effect of aggressive ions in soils on corrosion behavior of X70 steel[J]. Corrosion Science and Protection Technology,2005,17(2):98(in Chinese). 王世伟,李瑛,王林山.土壤中侵蚀性离子对X70钢的侵蚀作用研究[J].腐蚀科学与防护技术,2005,17(2):98. 53 Szklarska-Smialowska Z, Xia Z, Rebak R B. Technical note: Stress corrosion cracking of X-52 carbon steel in dilute aqueous solutions[J].Corrosion,1994,50(5):334. 54 Rebak R B, Xia Z, Safrudin R. Effect of solution composition and electrochemical potentialon stres corosion cracking of X52 pipelines-tel[J].Corosion,1996,52(5):396. 55 Fang B Y, Atrens A, Wang J Q, et al. Review of stress corrosion cracking of pipeline steels in “low” and “high” pH solutions[J].Journal of Materials Science,2003,38(1):127. 56 Wu T, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment[J].Corrosion Science,2014,88:291. 57 Wu T, Yan M, Zeng D, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria[J].Journal of Materials Science & Technology,2015,31(4):413. 58 Wu T, Xu J, Yan M, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J].Corrosion Science,2014,83:38. 59 Wang Dan, Xie Fei, Wu Ming, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel[J].Transactions of Materials and Heat Treatment,2016,37(5):198(in Chinese). 60 Tsai Y P. Interaction of chlorine concentration and shear stress on chlorine consumption, biofilm growth rate and particle number[J].Bioresource Technology,2006,97(15):1912. 61 Javaherdashti R, Raman R K S, Panter C, et al. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria[J].International Biodeterioration & Biodegradation,2006,58(1):27. |
|
|
|