RESEARCH PAPER |
|
|
|
|
|
Structure and Magnetic Properties of Electrospun Co0.6Ni0.3Zn0.1Fe2O4 and Co0.6Ni0.3Cu0.1Fe2O4 Nanofibers |
DAI Jianfeng1,2, TIAN Xiguang1,2 , YAN Xingshan2, LI Weixue2, WANG Qing2
|
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou 730050; 2 School of Sciences, Lanzhou University of Technology, Lanzhou 730050 |
|
|
Abstract In this paper, the precursor of Co0.6Ni0.3Cu0.1Fe2O4/PVP and Co0.6Ni0.3Zn0.1Fe2O4/PVP nanofibers with uniform diameter and smooth surface were prepared by electrospinning technique. Then the Co0.6Ni0.3Cu0.1Fe2O4/PVP and Co0.6Ni0.3Zn0.1-Fe2O4/PVP nanofibers were obtained via heat treatment at 500—900 ℃. The phase, morphology, structure and magnetic properties of the resultant Co0.6Ni0.3Cu0.1Fe2O4 and Co0.6Ni0.3Zn0.1Fe2O4 nanofibers were characterized by TG-DSC, XRD, SEM and VSM respectively. The results show that the pure phase and well crystallized Co0.6Ni0.3Cu0.1Fe2O4 and Co0.6Ni0.3Zn0.1Fe2O4nanofibers or staple fibers can be obtained after heat treatment in the air by heat treatment at 500—900 ℃. When the temperature is at 700 ℃, the diameter of Co0.6Ni0.3Cu0.1Fe2O4 and Co0.6Ni0.3Zn0.1Fe2O4 nanofibers with smooth surface is about 80 nm, and moreover, the Co0.6Ni0.3Cu0.1Fe2O4 nanofibers retain a high remanence ratio (Mr/Ms) and a coercivity of 0.56 and 1 088.87 Oe respectively. At 500 ℃, 600 ℃, 700 ℃, 800 ℃, 900 ℃, Co0.6Ni0.3Zn0.1Fe2O4 nanofibers exhibit the intensities of saturation magnetization which are 14.5%, 7%, 16%, 10.7%, 8% higher than those of Co0.6Ni0.3Cu0.1Fe2O4 nanofibers respectively, as well as the coercive forces which are 38%, 51%, 50%, 46%, 46.7% lower than Co0.6Ni0.3Cu0.1Fe2O4 nanofibers respectively. The differences of saturation magnetization and coercivity of the two nanofibers provide a good reference for electromagnetic applications of CoNi ferrite.
|
Published:
Online: 2018-05-08
|
|
|
|
1 韩志全. 铁氧体及其磁性物理[M]. 北京:航空航天出版社,2010:3. 2 Mustafa G, Islam M U, Zhang W, et al. Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co-Cr ferrites for a variety of applications[J]. J Alloys Compd, 2015, 618:428. 3 Rahman M T, Vargas M, Ramana C V. Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite[J]. J Alloys Compd, 2014,617:547. 4 Pankhurst Q A, Thanh N T K, Jones S K, et al. Progress in applications of magnetic nanoparticles in biomedicine[J]. J Phys D: Appl Phys, 2009,42(22):22401. 5 Chen B, Chen D, Kang Z, et al. Preparation and microwave absorption properties of Ni-Co nanoferrites[J]. J Alloys Compd, 2015,618:222. 6 Zhuang Fuqiang, Tan Ruiqin, Yang Ye, et al. Research progress in the application of magnetic nanomaterials for the adsorption of heavy metal ions in wastewater[J]. Mater Rev:Rev, 2014,28(3):24(in Chinese). 庄福强, 谭瑞琴, 杨晔,等. 磁性纳米材料在污水中重金属离子吸附应用中的研究进展[J]. 材料导报:综述篇, 2014, 28(3):24. 7 Shi Tingting, Li Tao, Jin Guangrong, et al. Applications of nanomaterials in the field of medicine[J]. Mater Rev, 2014,28(s2):24(in Chinese). 史婷婷, 李涛, 晋光荣,等. 纳米材料在医药领域的应用[J]. 材料导报, 2014,28(专辑24):24. 8 Ma Yongqing, Huang Song, Xu Shitao. Investigation on the magnetic properties of hard CoFe2O4/soft CoFe2 composites[J]. J Anhui University(Nat Sci Ed), 2016,40(1):37(in Chinese). 马永青, 黄松, 徐士涛. 硬磁CoFe2O4/软磁CoFe2复合物的磁性研究[J]. 安徽大学学报(自然科学版), 2016,40(1):37. 9 Xiang Jun, Chu Yanqiu, Zhou Guangzhen. et al. Electrospinning fabrication,characterization and magnetic properties of Co0.5Ni0.5-Fe2O4nanofibers[J]. Chin J Nonferr Met, 2011,21(8):1944(in Chinese). 向军, 褚艳秋, 周广振,等. Co0.5Ni0.5Fe2O4纳米纤维的静电纺丝法制备、表征及其磁性能[J]. 中国有色金属学报, 2011,21(8):1944. 10 Lohar K S, Pachpinde A M, Langade M M, et al. Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+, doped CoFe2O4, nanoparticles[J]. J Alloys Compd, 2014,604(604):204. 11 Li L Z, Yu Z, Lan Z W, et al. Structural and magnetic properties of Mg-substituted NiZnCo ferrite nanopowders[J]. Ceram Int, 2014, 40(9):13917. 12 Stefanescu M, Bozdog M, Muntean C, et al. Synthesis and magnetic properties of Co1-xZnxFe2O4 (x=0-1) nanopowders by thermal decomposition of Co(Ⅱ), Zn(Ⅱ) and Fe(Ⅲ) carboxylates[J]. J Magn Magn Mater, 2015,393:92. 13 Chen Ri. Preparation and properties of hydrothermal cobalt ferrite nano-materials[D]. Beijing: Beijing University of Chemical Technology, 2014(in Chinese). 陈日. Co基铁氧体纳米材料的水热制备及性能研究[D]. 北京:北京化工大学, 2014. 14 Zhao Haitao, Wang Qiao, Liu Ruiping, et al. Synthesis and magnetocaloric properties of Ni-Co-Zn nano ferrites[J]. Chem J Chinese Universities, 2016,37(4):613(in Chinese). 赵海涛, 王俏, 刘瑞萍,等. 镍钴锌纳米铁氧体的制备及磁热性能[J]. 高等学校化学学报, 2016,37(4):613. 15 Hu Dandan. Preparation of CoFe2O4 and BiFeO3 thin films by ultrasonic spray pyrolysis and their properties[D].Guangzhou:South China University of Technology, 2014(in Chinese). 胡丹丹.超声喷雾热解法制备CoFe2O4和BiFeO3薄膜及其性能研究[D]. 广州:华南理工大学, 2014. 16 Yan Chengcheng, Jia Yongtang, Zeng Xianhua, et al. Research development of electrospinning nanofiber mats for heavy metal ions adsorption[J]. Mater Rev:Rev, 2014, 28(5):139(in Chinese). 闫成成, 贾永堂, 曾显华,等. 静电纺纳米纤维膜用于重金属离子吸附的研究进展[J]. 材料导报:综述篇, 2014, 28(5):139. 17 Bayrakdar H, Esmer K. Dielectric characterization of NixCo1-x-Fe2O4 nanocrystals thin film over a broad frequency range (1 MHz—3 GHz)[J]. J Appl Phys, 2010,107(4):044102. 18 Pan Weiwei, Liu Shihua, Nie Dongmei. Developments of spinel ferrite nanofibers fabricated by electrospinning[J]. Mater Sci, 2016, 6(4): 230(in Chinese). 潘伟伟, 刘世华, 聂冬梅. 静电纺丝法制备尖晶石铁氧体纳米纤维的研究进展[J]. 材料科学, 2016, 6(4):230. 19 Xiang Jun. Fabarication, characterization and magnetic properties of electrospun complex spinel ferrite-based micro/nano fibers[D]. Zhenjiang: Jiangsu University, 2011(in Chinese). 向军. 多元尖晶石铁氧体基微纳米纤维的电纺制备、表征与磁性能研究[D]. 镇江:江苏大学, 2011. 20 Zhang Jie. Ferrite nanofibers fabricated by electrospinning: Its microstructure and magnetic properties research[D]. Lanzhou: Lanzhou University of Technology, 2014(in Chinese). 张杰. 静电纺丝法制备铁氧体纳米纤维的微结构及磁性能研究[D]. 兰州:兰州理工大学, 2014. 21 Soares J M, Cabral F A O, Araújo J H D, et al. Exchange-spring behavior in nanopowders of CoFe2O4-CoFe2[J]. Appl Phys Lett, 2011, 98(7):072502. |
|
|
|