RESEARCH PAPER |
|
|
|
|
|
The Growth and Morphology Characterization of GaN Micro pyramid Structure |
ZHAO Chen1,2, JIA Wei1,2, FAN Teng1,2, TONG Guangyun1,2, LI Tianbao1,2,ZHAI Guangmei1,2, MA Shufang1,2, XU Bingshe1,2
|
1 Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024; 2 Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 |
|
|
Abstract The GaN micro-pyramid was grown on unintentional doped GaN epitaxial layers with in-situ pre-deposited SiNx mask via metal organic chemical vapor deposition (MOCVD).The effects of growth temperature, growth time, reaction pressure and Ⅴ/Ⅲ ratio on morphology of the GaN micro-pyramids were studied systematically. The results showed that the GaN micro-pyramid structures were formed at 1 075 ℃. As the growth time was prolonged from 3 min to 20 min, the basal diameter of the GaN micro-pyramids increased from 3.6 μm to 19.8 μm, while the density decreased from 3.8×103 cm-2 to 0.8×103 cm-2. The final complete pyramid-like or truncated pyramid-like GaN micro-structures was mainly determined by reaction pressure and Ⅴ/Ⅲ ratio. These results pave the way for the controllable in-situ growth of GaN micro/nano structures and may facilitate the further development of three-dimensional GaN-based LED devices.
|
Published:
Online: 2018-05-08
|
|
|
|
1 Nakamura S, Senoh M, Mukai T. High-power InGaN/GaN double-heterostructure violet light emitting diodes[J]. Appl Phys Lett, 1993,62(19):2390. 2 Crawford M H. LEDs for solid-state lighting performance challenges and recent advances[J]. J Selected Topic Quantum Electron, 2009,15(4):13. 3 Dai Q, Schubert M F, Kim M H, et al. Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities[J]. Appl Phys Lett, 2009,94(11):111109. 4 Lu I L, Wu Y R, Singh J. A study of the role of dislocation density, indium composition on the radiative efficiency in InGaN/GaN polar and nonpolar light-emitting diodes using drift-diffusion coupled with a Monte Carlo method[J]. J Appl Phys, 2010,108(12):124508. 5 De S, Layek A, Bhattacharya S, et al. Quantum-confined stark effect in localized luminescent centers within InGaN/GaN quantum-well based light emitting diodes[J]. Appl Phys Lett, 2012,101(12):121919. 6 Qiming L, Westlake K R, Wang G T, et al. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays[J]. Optics Express, 2011,19(25):25529. 7 Piprek J. Efficiency droop in nitride-based light-emitting diodes[J]. Phys Status Solidi A, 2010,207(10):2217. 8 Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl Phys Lett, 2007,91(18):183507. 9 Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence[J]. Appl Phys Lett, 2007,91(14):141101. 10 Li S, Waag A. GaN based nanorods for solid state lighting[J]. J Appl Phys, 2012,111(7):071101. 11 Jung B O, Bae S Y, Lee S, et al. Emission characteristics of InGaN/GaN core-shell nanorods embedded in a 3D light-emitting diode[J]. Nanoscale Res Lett, 2016,11(1):215. 12 Hou Y, Bai J, Smith R, et al. A single blue nanorod light emitting diode[J]. Nanotechnology, 2016,27(20):205205. 13 Zhou P, Ren X Y, Yuan J S. XRD and AFM ivestigation of GaN nanocolumns grown by MBE[J]. J Chongqing University of Technology(Natural Science), 2014(4):104(in Chinese). 周平,任宵钰,苑进社.MBE生长GaN纳米柱XRD和AFM分析[J].重庆理工大学学报(自然科学版),2014(4):104. 14 Rizal U, Swain B S, Swain B P. The role of ammonization on chemical bonding and optical properties of nickel-catalyzed gallium nitride nanowire[J]. Appl Phys A, 2016,122(4):1. 15 Saleem U, Wang H, Peyrot D, et al. Germanium-catalyzed growth of single-crystal GaN nanowires[J]. J Crystal Growth, 2016,439:28. 16 Xu B S, Yang D, Ma S F, et al. Synthesis of large-scale GaN nanobelts by chemical vapor deposition[J]. Appl Phys Lett, 2006,89(7):074106. 17 Wang Y D, Chua S J, Tripathy S, et al. High optical quality GaN nanopillar arrays[J]. Appl Phys Lett,2005,86(7):071917. 18 Chiu C H, Lu T C, Huang H W, et al. Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands[J]. Nanotechnology, 2007,18(44):445201. 19 Paramanik D, Motayed A, Aluri G S, et al. Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme[J]. J Vacuum Sci Technol B, 2012,30(5):052202. 20 Wang H T, Zhai G M, Xu B S, et al. The morphologies and optical properties of three-dimensional GaN nano-cone arrays[J]. RSC Adv, 2016,6(49):43272. 21 L undin W V, Zavarin E E, Rozhavskaya M M, et al. Specific features of gallium nitride selective epitaxy in round windows[J]. Tech Phys Lett, 2011,37(8):735. 22 Chiu C H, Yen H H, Chao C L, et al. Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template[J]. Appl Phys Lett, 2008,93(8):081108. 23 Yang D, Liang H, Qiu Y, et al. Improvement of the quality of GaN epilayer by combining a SiNx interlayer and changed GaN growth mode[J]. J Mater Sci: Mater Electron, 2013,24(8):2716. 24 Qin Q, Yu N S, Chen H, et al. Residual stress in the GaN epitaxial film prepared by in situ SiNx deposition[J]. Acta Phys Sin,2005,54(11):5450(in Chinese). 秦琦, 于乃森, 陈弘, 等.使用SiNx原位淀积方法生长的GaN外延膜中的应力研究[J]. 物理学报, 2005,54(11):5450. 25 Liu J, Wang J, Gong X, et al. Structure, stress state and piezoelectric property of GaN nanopyramid arrays[J]. Appl Phys Express, 2011,4(4):045001. 26 Peng D S, Feng Y C, Niu H B. Lateral epitaxial overgrowth GaN thin film with MOCVD[J]. Electron Componets Mater, 2009,29(2):67(in Chinese). 彭冬生, 冯玉春, 牛憨笨. MOCVD法横向外延过生长GaN薄膜[J]. 电子元件与材料, 2009,29(2):67. 27 Liu H P, Chen I G, Tsay J, et al. Influence of growth temperature on surface morphologies of GaN crystals grown on dot-patterned substrate by hydride vapor phase epitaxy[J]. J Electroceram, 2004(13):839. 28 Jindal V, Shahedipour-Sandvik F. Theoretical prediction of GaN nanostructure equilibrium and nonequilibrium shapes[J]. J Appl Phys, 2009, 106(8):083115. 29 Moscatelli D, Caccioppoli P, Cavallotti C. Ab initio study of the gas phase nucleation mechanism of GaN[J]. Appl Phys Lett, 2005,86(9):091106. 30 Moscatelli D, Cavallotti C. Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE[J]. J Phys Chem A, 2007,111(21):4620. 31 Kappers M J, Datta R, Oliver R A, et al. Threading dislocation reduction in (0001) GaN thin films using SiNx interlayers[J]. J Crystal Growth, 2007, 300(1):70. 32 Hiramatsu K, Nishiyama K, Onishi M. Fabrication and characte-rization of low defect density GaN using facet-controlled epitaxial lateral overgrowth[J]. J Crystal Growth, 2000,221:316. |
|
|
|