| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Copper Matte Grade Prediction Based on APSO-Stacking Integrated Model |
| LI Linbo1,*, LIU Ziyang1, ZHANG Yexin2,*, YANG Jianjun1, DUAN Zhongxing3, WANG Zhaofeng1
|
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 2 SDIC Jincheng Metallurgical Co., Ltd., Lingbao 472500, Henan, China 3 School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China |
|
|
|
|
Abstract Copper matte is the main product and key raw material of matte smelting and crude copper production. Accurate prediction of copper matte grade is crucial to the optimization of smelting process. Aiming at the problem of poor prediction effect of traditional models, an optimized integrated prediction method is proposed. The original process datais preprocessed by box plot and Lagrange interpolation method, and the data set is constructed by combining grey correlation analysis (GRA) and Pearson correlation coefficient (Pearson) to screen high correlation features. In this work, RF and SVM are used as base learners, and LR is used as meta-learner. Combined with adaptive particle swarm optimization (APSO) and 5-fold cross-validation, a prediction model with high accuracy and anti-overfitting ability is constructed, and the prediction trend is verified by FactSage7.1. The results show that the prediction trend of the model is highly consistent with the theoretical calculation. Compared with the single models, it shows significant advantages in the prediction of copper matte grade. The MSE, MAE, and MAPE are 0.737 1, 0.631 2, and 0.913 6, respectively, which shows higher prediction accuracy and provides reference for copper matte grade control and smelting process optimization.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Wang L, Liu D W, Wang H, et al. Nonferrous Metals (Mineral Processing Section), 2024(9), 87(in Chinese). 王亮, 刘殿文, 王涵, 等. 有色金属(选矿部分), 2024(9), 87. 2 Liu Q F, Liao Y L, Wu Y, et al. Chemical Industry and Engineering Progress, 2022, 41(11), 6099(in Chinese). 刘庆丰, 廖亚龙, 吴越, 等. 化工进展, 2022, 41(11), 6099. 3 Wang B R, Yang H Y, Jin Z N, et al. The Chinese Journal of Nonferrous Metals, 2024, 34(3), 908(in Chinese). 王保仁, 杨洪英, 金哲男, 等. 中国有色金属学报, 2024, 34(3), 908. 4 Xia L X, Yang J, Wang W, et al. Yunnan Metallurgy, 2022, 51(6), 67(in Chinese). 夏立新, 杨佳, 王薇, 等. 云南冶金, 2022, 51(6), 67. 5 Wang J M, Gu M Y, Liu G H, et al. Chemical Industry and Engineering Progress, 2016, 35(5), 1303(in Chinese). 王计敏, 顾明言, 刘国华, 等. 化工进展, 2016, 35(5), 1303. 6 Yang H W, Wang Z K, Nan J F, et al. Nonferrous Metals (Extractive Metallurgy), 2020(7), 26(in Chinese). 杨宏伟, 王占柯, 南君芳, 等. 有色金属(冶炼部分), 2020(7), 26. 7 Zhang H B, Du W Z, Li L B, et al. Nonferrous Metals (Extractive Metallurgy), 2022(2), 34(in Chinese). 张宏斌, 杜武钊, 李林波, 等. 有色金属(冶炼部分), 2022(2), 34. 8 Li L B, Liu Z Y, Yang J J, et al. Nonferrous Metals Engineering, 2024, 14(11), 108(in Chinese). 李林波, 刘子杨, 杨建军, 等. 有色金属工程, 2024, 14(11), 108. 9 Ma H, Li Z, Shu B, et al. Metals, 2024, 14(8), 916. 10 Liu X J, Wen L Y X, Zhang Y J, et al. China Metallurgy, 2024, 34(2), 83(in Chinese). 刘小杰, 温梁亦欣, 张玉洁, 等. 中国冶金, 2024, 34(2), 83. 11 Li T, Gu W, Gao W, et al. JOM, DOI:10.1007/S11837-024-06886-8. 12 Zhang X Z. Ultra-high-cycle fatigue life prediction of metallic mate rials based on machine learning. Master’s Thesis, Wuhan Textile University, China, 2023 (in Chinese). 张旭泽. 基于机器学习的金属材料超高周疲劳寿命预测. 硕士学位论文, 武汉纺织大学, 2023. 13 Qiu G X, Cai M C, Zhang Y, et al. Materials Reports, 2024, 38(20), 256(in Chinese). 邱国兴, 蔡明冲, 张毅, 等. 材料导报, 2024, 38(20), 256. 14 Tan P, Cao P. Journal of Central South University (Science and Technology), 2012, 43(2), 632(in Chinese). 谭鹏, 曹平. 中南大学学报(自然科学版), 2012, 43(2), 632. 15 Chen P, Ma X M, Xiang J J, et al. Coal Engineering, 2024, 56(7), 127(in Chinese). 陈攀, 马鑫民, 向俊杰, 等. 煤炭工程, 2024, 56(7), 127. 16 Wang J H, Fang Q, Wang J H, et al. Iron & Steel, 2024, 59(3), 79(in Chinese). 王健豪, 方庆, 王家辉, 等. 钢铁, 2024, 59(3), 79. 17 Deepthi Y P, Kalaga P, Sahu S K, et al. International Journal on Inte-ractive Design and Manufacturing (IJIDeM), DOI:10.1007/S12008-024-02032-5. 18 Lee C W, Woo S, Kim J. Journal of Materials Engineering and Perfor-mance, DOI:10.1007/S11665-024-10195-1. 19 Li M, Wang H, Chen Z, et al. Science of the Total Environment, 2024, 957, 177448. 20 Li H L, Lin M K, Wang Q C. Journal of Highway and Transportation Research and Development, 2019, 36(12), 8(in Chinese). 李海莲, 林梦凯, 王起才. 公路交通科技, 2019, 36(12), 8. 21 Jin J S. Metal Mine, 2024(6), 252(in Chinese). 金家胜. 金属矿山, 2024(6), 252. 22 Wang H B. Research of learning methods on Single-class support vector machine. Ph D. Thesis, Zhejiang University, China, 2023 (in Chinese). 王洪波. 单分类支持向量机的学习方法研究. 博士学位论文, 浙江大学, 2012. 23 Cheng G, Chen J, He L. Coal Technology, 2023, 42(10), 12(in Chinese). 程刚, 陈杰, 何磊. 煤炭技术, 2023, 42(10), 12. 24 Li H L, Yang S Y, Q Z T, et al. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(8), 10(in Chinese). 李海莲, 杨斯媛, 祁增涛, 等. 重庆交通大学学报(自然科学版), 2024, 43(8), 10. 25 Andreas V, Eric L, Lina R, et al. Applied Thermal Engineering, 2023, 227, 120336. 26 Liu H B, Jian H R. Yellow River, 2024, 46(11), 74(in Chinese). 刘洪波, 菅浩然. 人民黄河, 2024, 46(11), 74. 27 Dong Q, Li J W, Gu X Y, et al. China Journal of Highway and Transport, 2023, 36(12), 236(in Chinese). 董侨, 李家旺, 顾兴宇, 等. 中国公路学报, 2023, 36(12), 236. 28 Jiang J W, Zhao J B, Liu W J, et al. Shandong Science, 2023, 36(5), 75(in Chinese). 姜嘉伟, 赵金宝, 刘文静, 等. 山东科学, 2023, 36(5), 75. 29 Chen Z Y, Tan H Z, Cheng S Y, et al. Thermal Power Generation, 2023, 52 (7), 64(in Chinese). 陈植元, 谭厚章, 成思扬, 等. 热力发电, 2023, 52 (7), 64. |
|
|
|