| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Hot Deformation Behavior and Recrystallization Microstructure Evolution of Forged GH4098 Superalloy |
| ZHANG Zhihui1,3, WU Shengqing2, YANG Ruize3, WANG Jianqiang4, GUO Yifeng4, LIU Sheng4,*, XU Bin2,GUO Lili1,*, SUN Mingyue2
|
1 College of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China 2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 Yangtze Delta Region Institute of Advanced Materials, Suzhou 215000, Jiangsu, China 4 Suzhou Laboratory, Suzhou 215123, Jiangsu, China |
|
|
|
|
Abstract The isothermal hot compression tests of the forged GH4098 superalloy were conducted using the Gleeble-3800 thermal-mechanical simulator at strain rates ranging from 0.01 to 10 s-1 and deformation temperatures between 1 050 ℃ and 1 200 ℃). The constitutive equation and hot processing map of the alloy were established. The microstructural evolution laws during hot deformation under different temperatures (1 050 ℃, 1 100 ℃, 1150 ℃, 1 200 ℃ were analyzed at a high strain rate of 10 s-1. The constitutive equation and hot processing map of the GH4098 superalloy were derived using the Arrhenius constitutive model and the Zener-Hollomon parameter. The energy dissipation rate of the material reached 37% at strain rates of 0.01 to 0.022 s-1 and deformation temperatures of 1 050 ℃ to 1 150 ℃. The dynamic recrystallization (DRX) mechanism of the GH4098 superalloy was identified as discontinuous dynamic recrystallization (DDRX) through EBSD microstructural analysis. At temperatures ranging from 1 050 ℃ to 1 150 ℃, both the DRX volume fraction and average grain size increased with rising temperature, with peak values of 80.7% and 8.24 μm, respectively. At 1 200 ℃, the new grains underwent shape changes with increasing strain, promoting the occurrence of secondary recrystallization. This process resulted in a decrease in both the volume fraction of recrystallization and the average grain size. The output of this work indicates that the optimal hot working temperature range is 1 150—1 200 ℃, which could provide a theoretical foundation for the application of the GH4098 superalloy.
|
|
Published: 25 December 2025
Online: 2025-12-17
|
|
|
|
|
1 Bo Y, Liu J K, He Y H. Special Steel Technology, 2007, 50(13), 31 (in Chinese). 柏宇, 牛建科, 何云华. 特钢技术, 2007, 50(13), 31. 2 Wei Y J. Special Steel Technology, 2008, 55(14), 42 (in Chinese). 魏育君. 特钢技术, 2008, 55(14), 42. 3 Meng Z B, Wang Y Q, Yin F J, et al. Journal of Iron and Steel Research, 2003, 15(6), 54 (in Chinese). 蒙肇斌, 王延庆, 尹法杰, 等. 钢铁研究学报, 2003, 15(6), 54. 4 Yu Y H, Sun K P, Deng X Q, et al. Special Steel, 2008, 29(5), 35 (in Chinese). 喻育红, 孙魁平, 邓秀琴, 等. 特殊钢, 2008, 29(5), 35. 5 Shui L, Fu J H. Iron Steel Vanadium Titanium, 2023, 44(4), 173 (in Chinese). 税烺, 付建辉. 钢铁钒钛, 2023, 44(4), 173. 6 Li S, Zeng L, Miao H J, et al. Transactions of Materials and Heat Treatment, 2013, 34(9), 51 (in Chinese). 李莎, 曾莉, 苗华军, 等. 材料热处理学报, 2013, 34(9), 51. 7 Chen X M, Lin Y C, Chen M S, et al. Materials & Design, 2015, 77, 41. 8 Detrois M, Antonov S, Tin S, et al. Materials Characterization, 2019, 157, 109915. 9 He D G, Lin Y C, Chen M S, et al. Journal of Alloys and Compounds, 2015, 649, 1075. 10 Wang Y, Shao W Z, Zhen L, et al. Materials Science and Engineering A, 2011, 528(7-8), 3218. 11 Zhang H Y, Chen M, Hu R F, et al. Chinese Journal of Rare Metals, 2024, 48(5), 651 (in Chinese). 张海燕, 程明, 胡如夫, 等. 稀有金属, 2024, 48(5), 651. 12 Hajkazemi J, Zarei-Hanzaki A, Sabet M, et al. Materials Science and Engineering A, 2011, 530, 233. 13 Cao Y, Di H, Zhang J, et al. Journal of Nuclear Materials, 2015, 456, 133. 14 Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Materials & Design, 2016, 94, 28. 15 Wang L, Liu F, Tian Y, et al. Materials Reports, 2023, 37(S1), 456 (in Chinese). 王磊, 刘峰, 田野, 等. 材料导报, 2023, 37(S1), 456. 16 Tan Y B, Ma Y H, Zhao F. Journal of Alloys and Compounds, 2018, 741, 85. 17 Sellars C M, Tegart W J M. Mémoires Scientifiques de la Revue de Métallurgie, 1966, 63(9), 731. 18 Zhang F P, Gao Y, He X F, et al. Journal of Plasticity Engineering, 2023, 30(11), 98 (in Chinese). 张芳萍, 高毅, 和蕊芳, 等. 塑性工程学报, 2023, 30(11), 98. 19 Liu Z L, Ren S, Liu W, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(8), 2577 (in Chinese). 刘志凌, 任帅, 刘伟, 等. 中国有色金属学报, 2023, 33(8), 2577. 20 Wang W. Materials for Mechanical Engineering, 2020, 44(9), 87 (in Chinese). 王稳. 机械工程材料, 2020, 44(9), 87. 21 Ning Y, Yao Z, Guo H, et al. Journal of Alloys and Compounds, 2014, 584, 494. 22 Li N, Wang C Q, Sun Z L, et al. Hot Working Technology, 2025(10), 114 (in Chinese). 李宁, 王传奇, 孙振淋, 等. 热加工工艺, 2025(10), 114. 23 Li P, Xu H F, Meng M, et al. Journal of Plasticity Engineering, 2024, 31(2), 120 (in Chinese). 李萍, 许海峰, 孟淼, 等. 塑性工程学报, 2024, 31(2), 120. 24 Zhang J L, Zhang Y M, Luo W C, et al. Iron Steel Vanadium Titanium, 2023, 44(6), 149 (in Chinese). 张继林, 张又铭, 罗文翠, 等. 钢铁钒钛, 2023, 44(6), 149. 25 Liao C, Wu H, Wu C, et al. Progress in Natural Science:Materials International, 2014, 24(3), 253. 26 Prasad Y, Gegel H L, Doraivelu S M, et al. Metallurgical Transactions A, 1984, 15, 1883. 27 Li H Z, Yang L, Wang Y, et al. Journal of Materials Engineering, 2020, 48(9), 115 (in Chinese). 李慧中, 杨雷, 王岩, 等. 材料工程, 2020, 48 (9). 115. 28 Zhu Q, Zhang Z A, Zhang L F, et al. Forging Stamping Technology, 2024, 49(7), 57 (in Chinese). 朱强, 张自昂, 张林福, 等. 锻压技术, 2024, 49(7), 57. 29 Li Y, Dong Y, Jiang Z, et al. Metals and Materials International, 2024, 30(5), 1356. 30 Pang H, Li Q. Journal of Alloys and Compounds, 2022, 920, 165937. 31 Lizzi F, Pradeep K, Stanojevic A, et al. Metals, 2021, 11(4), 605. 32 Wang B, Shan X, Zhao H, et al. Journal of Alloys and Compounds, 2023, 936, 168059. 33 Sheng S L. Hot deformation behavior of 316LN-Mn austenitic stainless steel. Master’s Thesis, Jiangsu University of Science and Technology, China, 2022 (in Chinese). 盛绍龙. 316LN-Mn奥氏体不锈钢的热变形行为研究. 硕士学位论文, 江苏科技大学, 2022. 34 Mandal S, Jayalakshmi M, Bhaduri A K, et al. Metallurgical and Materials Transactions A, 2014, 45, 5645. 35 Liao B, Wu X, Cao L, et al. Journal of Alloys and Compounds, 2019, 796, 103. 36 Kubota M, Ushioda K, Miyamoto G, et al. Scripta Materialia, 2016, 112, 92. 37 Samantaray D, Mandal S, Jayalakshmi M, et al. Materials Science and Engineering A, 2014, 598, 368. |
|
|
|