| POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
| Experimental Research on Basal Sapping Repair in Semiarid Earthen Sites with In-situ Polymerization SAP |
| ZHANG Yifan1, LI Miao1, ZHENG Yao1, LIU Senbiao1, CHENG Zhuoyue1, LUO Hongjie1,2, LI Jianxi3, YAN Hongbin4, ZHU Jianfeng1,*
|
1 School of Materials Science and Engineering, School of Cultural Relics Protection Science and Technology, Key Laboratory of Underground Cultural Relics Protection Materials and Technology, Ministry of Education, Shaanxi University of Science and Technology, Xi ’an 710021, China 2 Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China 3 Shaanxi Academy of Archaeology, Xi’an 710054, China 4 Yungang Research Institute, Datong 037004, Shanxi, China |
|
|
|
|
Abstract Undercutting is one of the typical diseases of earth sites in semi-arid regions, in which basal sapping poses a serious threat to the stability and integrity of earth sites. This work added solution precursors to the repair soil samples, forming super absorbent polymer (SAP) through in-situ polymerization of acrylate-acrylamide-propyl sulfonic acid ternary copolymer, which can regulate water migration and improve the mechanical properties and durability of the repair materials. Then the in-situ polymerization mechanism of SAP were revealed and the phase composition and micro-morphology of soil samples modified with different contents of SAP was explored, as well as the impact on soil color, air permeability, compressive strength, resistance to disintegration, and salt cycle resistance. The results show that SAP successfully forms a honeycomb network structure within the soil matrix, enhancing the strength of the soil matrix. When the solid content of SAP is 5%, the compressive strength of the soil sample reaches 5.5 MPa, which is a fivefold increase compared to the blank soil sample. The addition of SAP reduces the color difference of the soil sample to less than 3%, while the change in air permeability is minimal, meeting the standards for cultural relic restoration materials. SAP improves the disintegration resistance of the soil by absorbing water to form a gel to block water, showing no significant changes in appearance after soaking in water for 48 h, while the dry strength remains at 4.52 MPa. The water retention effect of SAP can slow down moisture evaporation, thereby inhibiting salt crystallization. After seven cycles of salt resistance testing, the structure of the soil sample remains largely intact, with strength still at 2.89 MPa. Therefore, the addition of super absorbent materials is expected to become an effective approach for the erosion repair of archaeological sites through regulation.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Sun M L, Chen Y R, Shen Y X, et al. Dunhuang Research, 2022(2), 136(in Chinese). 孙满利, 陈彦榕, 沈云霞, 等. 敦煌研究, 2022(2), 136. 2 Zhang G H. Research on consolidation and protection of earth sites. Master's Thesis, Xi’an University of Architecture Science and Technology, China, 2006(in Chinese). 张光辉. 土遗址加固保护研究. 硕士学位论文, 西安建筑科技大学, 2006. 3 Sun M L, Du Z C. Sciences of Conservation and Archaeology, 2024, 36(4), 143(in Chinese). 孙满利, 窦子超. 文物保护与考古科学, 2024, 36(4), 143. 4 Du Z L, Zhu J F, Ma T, et al. Materials Reports, 2024, 39(8), 88(in Chinese). 杜之琳, 朱建锋, 马涛, 等. 材料导报, 2024, 39(8), 88. 5 Zhao H Y, Wen H Z, Hu B, et al. In:Oroceedings of the Second National Geotechnical and Engineering Conference. Wuhan, 2006, pp.896(in Chinese). 赵海英, 魏厚振, 胡波, 等. 第二届全国岩土与工程学术大会论文集. 武汉, 2006, pp.896. 6 Dong Y Z. The Silk Road, 2017(20), 62(in Chinese). 董永周. 丝绸之路, 2017(20), 62. 7 Zhang L L, Hua S D, Zhi H J, et al. Materials Reports, 2020, 34(9), 9034(in Chinese). 张立力, 华苏东, 诸华军, 等. 材料导报, 2020, 34(9), 9034. 8 Xia Y Y. Analysis of factors affecting the hollowing out of the rammed earth walls of the Ming Great Wall at Jiayuguan. Master's Thesis, Lanzhou University, China, 2020(in Chinese). 夏云云. 嘉峪关明长城夯土墙体掏蚀影响因素分析. 硕士学位论文, 兰州大学, 2020. 9 Zhen G Q. In:Protection of Open Earth Sites against Rain Erosion, Conservation and Archaeology of Cultural Relics, Xi’an, China, 2006, pp.394(in Chinese). 甄广全. 露天土遗址防雨蚀保护, 文物保护与科技考古. 西安, 2006, pp.394. 10 Cui K, Kan W W, Han L, et al. Chinese Journal of Geotechnical Engineering, 2011, 33(9), 1412(in Chinese). 崔凯, 谌文武, 韩琳, 等. 岩土工程学报, 2011, 33(9), 1412. 11 Cui K, Guan X P, Kan W W, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(10), 1777(in Chinese). 崔凯, 关喜鹏, 谌文武, 等. 岩土工程学报, 2017, 39(10), 1777. 12 Lei J L, Huang M Y, Chen H L, et al. Materials Reports, 2012, 26(15), 88(in Chinese). 雷惊雷, 黄美燕, 陈卉丽, 等. 材料导报, 2012, 26(15), 88. 13 Cui K, Zhao X Z, Zhu M J, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(11), 2043(in Chinese). 崔凯, 赵晓铮, 朱鸣基, 等. 岩土工程学报, 2022, 44(11), 2043. 14 Wang Y L. Regional Governance, 2021(26), 201(in Chinese). 王宇龙. 区域治理, 2021(26), 201. 15 Lv J, Zhao H, Zhang J Y, et al. Materials Reports, 2024, 38(7), 97(in Chinese). 吕晶, 赵欢, 张金翼, 等. 材料导报, 2024, 38(7), 97. 16 Zhang Y W, Wang X F, Wu Y T, et al. Materials Reports, 26(3), 51(in Chinese). 张雅文, 王秀峰, 伍媛婷, 等. 材料导报 , 2012, 26(3), 51. 17 Zhang Q Y. Study on the inhibition of salinity degradation in the hollowing area of an earthen site by SH hydrophobic bedding. Master's Thesis, Lanzhou University, China, 2022(in Chinese). 张起勇. SH疏水性垫层抑制土遗址掏蚀区盐渍劣化研究. 硕士学位论文, 兰州大学, 2022. 18 Zhao H Y, Li Z X, Wang N, et al. Rock and Soil Mechanics, 2008, 29(2), 392(in Chinese). 赵海英, 李最雄, 汪稔, 等. 岩土力学, 2008, 29(2), 392. 19 Li X M, Zhang H Y, Wu D, et al. Rock and Soil Mechanics, 2023, 44(6), 1593(in Chinese). 李新明, 张浩扬, 武迪, 等. 岩土力学, 2023, 44(6), 1593. 20 He F G, Kan W W, Han W F. Rock and Soil Mechanics, 2009, 30(12), 3803(in Chinese). 和法国, 谌文武, 韩文峰. 岩土力学, 2009, 30(12), 3803. 21 Zhang J Z, Wang J, Li Y, et al. Materials Reports, 2022, 36(16), 17(in Chinese). 张吉哲, 王静, 李岩, 等. 材料导报, 2022, 36(16), 17. 22 Ranalli G, Bottura G, Taddei P, et al. Journal of Environmental Science and Health, 2001, 36(4), 415. 23 Mondini C, Dell A, Maria T, et al. Journal of Environmental Quality, 2003, 32(6), 2379. 24 Wang K, Hu Y Y, He R, et al. Materials Reports, 2023, 37(23), 246(in Chinese). 王柯, 胡元元, 何锐, 等. 材料导报, 2023, 37(23), 246. 25 Zhang J H. Water Resources and Hydropower Engineering, 2005, 36(11), 121(in Chinese). 张金宏. 水利水电技术, 2005, 36(11), 121. 26 Li Yunfeng, Luo Hongjie, Zhang Biao, et al. Materials Today Communications, 2023, 34, 2352. 27 Zhu Huimmei, Chen Jiani, Li Hui. Case Studies In Construction Materials, 2022, 17, 2214. 28 Zhang C, Wang Z D, Shi X Y, et al. Materials Reports, 2024, 38(22), 196(in Chinese). 张铖, 王振地, 史鑫宇, 等. 材料导报, 2024, 38(22), 196. 29 Liu S B, Zhu J F, Du Z L, et al. Journal of Shaanxi University of Science and Technology, 2023, 41(4), 92(in Chinese). 刘森彪, 朱建锋, 杜之琳, 等. 陕西科技大学学报, 2023, 41(4), 92. 30 Vshivkov S A, Soliman T S, Kluzhin E S, et al. Journal of Molecular Liquids, 2019, 294, 111551. 31 Rao B, Zou W J, Zhao W, et al. Chinese Journal of Engineering, 2024, 46(6), 1012(in Chinese). 饶博, 邹文杰, 赵伟, 等. 工程科学学报, 2024, 46(6), 1012. 32 Xu R, Xie X, Ren B, et al. Journal of Hydrology, 2021, 600, 126571. 33 Al-Hajri S, Mahmood S M, Saeed Akbari, et al. Journal of Petroleum Exploration and Production Technology, 2019, 9(2), 1539. |
|
|
|