| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Computational Design of Dual-atom Chromium Metal-Organic Frameworks Based Cathode Materials for Fuel Cells |
| FENG Zhen1,2,*, RAO Yuncheng1, WANG Weihui3, ZHENG Xianfeng2,*
|
1 School of Materials Sciences and Engineering, Henan Institute of Technology, Xinxiang 453003, Henan, China 2 Henan Key Laboratory of Advanced Cable Materials and Intellgent Manufactring, Henan Institute of Technology, Xinxiang 453003, Henan, China 3 School ofScience, Henan Institute of Technology, Xinxiang, 453003, Henan, China |
|
|
|
|
Abstract Hydrogen energy fuel cell vehicles can promote energyconservation and emission reduction in the transportation sector, as well as the transformation and upgrading of energy. The optimal design of cathode materials plays a pivotal role in affecting the efficiency of fuel cells. This work takes dual-atom chromium metal-organic frameworks as the research object and analyzes the performance of dual-atom chromium metal-organic frameworks from the atomic structure optimization, determination of lattice parameters, stability analysis, and free energy calculation, respectively. The optimized lattice constant is 8.30 Å, and it exhibits excellent structural stability within the temperature range of 350 K to 650 K. Through the analysis of the atomic structure of the oxygen reduction adsorption intermediates, it is found that there are three reaction paths. The overpotential of the optimized best reaction path is 0.99 V, which could replace the existing commercial cathode materials. These findings provide theoretical support for the application of dual-atom chromium metal-organic framework materials in fuel cells.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Yuan W, Ma Y, Wu H, et al. Journal of Energy Chemistry, 2022, 65, 254.
2 Liu Y D, Guo H X, Ouyang X P, et al. Engineering Sciences in China, 2021, 23(4), 162 (in Chinese).
刘应都, 郭红霞, 欧阳晓平. 中国工程科学, 2021, 23(4), 162.
3 Ye C, Xu L. Journal of Materials Chemistry A, 2021, 9(39), 22218.
4 Shao Y L, Wang L Y, Zhang X Y, et al. Chemistry Bulletin, 2023, 86(12), 1426 (in Chinese).
邵然磊, 王鲁元, 张兴宇, 等. 化学通报, 2023, 86(12), 1426.
5 Liao P, Kang J, Zhong Y, et al. Science China Chemistry, 2023, 66(7), 1924.
6 Feng Z, Yang Z, Meng X, et al. Journal of Materials Chemistry A, 2022, 10, 4731.
7 Wang Z, Fu S, Zhang W, et al. Advanced Materials, 2024, 36(21), 2311454.
8 Huang Z, Geihufe R. Quantum Metal-Organic Frameworks. Small Science, 2024, 4(10), 2400161.
9 Lv Z W, Lu M M, Liu Q, et al. New Chemical Materials, 2024, 52(1), 36 (in Chinese).
吕周围, 路萌萌, 刘茜, 等. 化工新型材料, 2024, 52(1), 36.
10 Ma W H, Ma Y, Wu M O, et al. Fine Chemicals, 2025, 42(1), 12(in Chinese).
马文皓, 马悦, 吴明鸥, 等. 精细化工, 2025, 42(1), 12.
11 Torad N, Salunkhe R, Li Y, et al. Chemistry A European Journal, 2014, 20(26), 7895.
12 Shen L, Song H, Wang C. Electrochimica Acta, 2017, 235, 595.
13 Wei X, Jiang C, Xu H, et al. ACS Catalysis, 2023, 13(24), 15663.
14 Lou H, Schwingenschlögl S, Yang G. Applied Surface Science, 2023, 626, 157203.
15 Xu X, Guan J. Chemical Science, 2024, 15, 14585.
16 Shang S, Du C, Liu Y, et al. Nature Communications, 2022, 13, 7599.
17 Li X, Liu Q, Tang Y, et al. Journal of the American Chemical Society, 2023, 145(14), 7869.
18 Chen Y, Gong S N, Lu H, et al. Modern Chemical Research, 2021, (18), 130 (in Chinese).
陈瀛, 宫斯宁, 芦露华, 等. 当代化工研究, 2021, (18), 130.
19 Mathew K, Sundararaman R, Letchworth-Weaver K, et al. The Journal of Chemical Physics, 2014, 140, 084106.
20 Blochl P. Physical Review B, 1994, 50, 17953.
21 Martyna G, Klein M, Tuckerman. The Journal of Chemical Physics, 1992, 97, 2635.
22 Wang V, Xu N, Liu J, et al. Computer Physics Communications, 2019, 267, 108033.
23 Wu D, He B, Wang Y, et al. Journal of Physics D:Applied Physics, 2022, 55(20), 203001.
24 Nørskov J, Rossmeisl J, Logadottir, et al. The Journal of Physical Chemistry B, 2004, 108(46), 17886.
25 Yang M, Wang Y, Huang Y, et al. Angewandte Chemie, 2024, 64(10) e202421008.
26 Shang S, Du C, Liu Y, et al. Nature Communications, 2022, 13(1), 7599. |
|
|
|