| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Integrated CO2 Liquid-phase Absorption Electrocatalytic Conversion |
| WANG Shaona1, YANG Yang2, XU Wenqing2,*, BAI Dingrong1, SU Fabing1,2, ZHU Tingyu2
|
1 School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China 2 Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 110190, China |
|
|
|
|
Abstract Carbon capture and utilization (CCU) technology is an important way to achieve carbon neutrality. In the traditional CCU process, CO2 needs to go through many steps such as absorption, desorption, compression, and transportation to obtain high-purity gas, followed by electrochemical CO2 reduction reaction (eCO2RR), resulting in high technical energy consumption and cost investment. Direct electrochemical conversion via the captured-CO2 reduction reaction (cCO2RR) is a cutting-edge technology that can avoid high energy consumption steps such as regeneration and compression transportation, thereby achieving cost reduction. This article systematically reviews the research progress of cCO2RR. We have sorted out the effects and mechanisms of electrode materials, absorbent components, additives, etc. on the cCO2RR in organic amine solution and alkaline solution systems, and summarized the research status of cCO2RR. The electrode material mainly includes components such as Au, Ag, Cu, etc. Increasing the surface area of the electrode material by changing its morphology is the main means to improve the electrocatalytic performance. The research on absorption solutions mainly focuses on the types of absorption solutions and additives, among which alkaline solutions are mainly NaHCO3 and KHCO3, while organic amine solutions are mainly single organic amines such as primary/se-condary/tertiary amines. By adding metal cations and cationic surfactants, the conductivity of the solution can be improved and the hydrogen evolution side reaction can be suppressed, respectively, which both can enhance the selectivity of the product. Future research should focus on the modification methods of catalytic materials, regulating the selectivity of products, and conducting research on organic amine phase transition absorption systems.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Gutiérrez-Sánchez O, Bohlen B, Daems N, et al. ChemElectroChem, 2022, 9(5), e202101540. 2 Gao W, Liang S, Wang R, et al. Chemical Society Reviews, 2020, 49(23), 8584. 3 Marocco S F, MacPherson F, Leclaire J. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 71. 4 Hernández S, Amin F M, Sastre F, et al. Green Chemistry, 2017, 19(10), 2326. 5 Karapinar D, Creissen C E, Rivera de la Cruz J G, et al. ACS Energy Letters, 2021, 6(2), 694. 6 García de A F P, Dinh C T, Ozden A, et al. Science, 2020, 367(6478), 661. 7 Abdinejad M, Dao C, Deng B, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(25), 9549. 8 Li M, Tian X, Garg S, et al. ACS Applied Materials & Interfaces, 2020, 12(20), 22760. 9 Alerte T, Edwards J P, Gabardo C M, et al. ACS Energy Letters, 2021, 6(12), 4405. 10 Greenblatt J B, Miller D J, Ager J W, et al. Joule, 2018, 2(3), 381. 11 Sullivan I, Goryachev A, Digdaya I A, et al. Nature Catalysis, 2021, 4(11), 952. 12 Ramdin M, de Loos T W, Vlugt T J H. Industrial & Engineering Chemistry Research, 2012, 51(24), 8149. 13 Rochelle G T. Science, 2009, 325(5948), 1652. 14 Li K, Leigh W, Feron P, et al. Applied Energy, 2016, 165, 648. 15 Fridahl M, Hansson A, Haikola S. Climate, 2020, 8(6), 75. 16 Lee G, Li Y C, Kim J Y, et al. Nature Energy, 2021, 6(1), 46. 17 Chen L, Li F, Zhang Y, et al. ChemSusChem, 2017, 10(20), 4109. 18 Hossain M N, Ahmad S, da Silva I S, et al. Chemistry-A European Journal, 2021, 27(4), 1346. 19 Kim J H, Jang H, Bak G, et al. Energy & Environmental Science, 2022, 15(10), 4301. 20 Abdinejad M, Mirza Z, Zhang X A, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(4), 1715. 21 Ahmad N, Chen Y, Wang X, et al. Renewable Energy, 2022, 189, 444. 22 Pérez-Gallent E, Vankani C, Sánchez-Martínez C, et al. Industrial & Engineering Chemistry Research, 2021, 60(11), 4269. 23 Li Q, Qu T, Tan S, et al. Chemical Engineering Journal, 2024, 498, 155056. 24 Dai R, Zhang L, Viet Bao Tran K, et al. Separation and Purification Technology, 2025, 355, 129575. 25 Diaz L A, Gao N, Adhikari B, et al. Green Chemistry, 2018, 20(3), 620. 26 Li T, Lees E W, Goldman M, et al. Joule, 2019, 3(6), 1487. 27 Zhang Z, Lees E W, Habibzadeh F, et al. Energy & Environmental Science, 2022, 15(2), 705. 28 Li T, Lees E W, Zhang Z, et al. ACS Energy Letters, 2020, 5(8), 2624. 29 Fink A G, Lees E W, Zhang Z, et al. ChemElectroChem, 2021, 8(11), 2094. 30 Gutiérrez-Sánchez O, Daems N, Bulut M, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56205. 31 Diederichsen K M, Sharifian R, Kang J S, et al. Nature Reviews Methods Primers, 2022, 2(1), 68. 32 Keith D W, Holmes G, St Angelo D, et al. Joule, 2018, 2(8), 1573. 33 Bottoms R. U. S. Patent 1, 783, 901, 1930. 34 Sun C, Dutta P K. Industrial & Engineering Chemistry Research, 2016, 55(22), 6276. 35 Nonhebel G. Transactions of the Faraday Society, 1936, 32, 1291. 36 Sanz-Pérez E S, Murdock C R, Didas S A, et al. Chemical Reviews, 2016, 116(19), 11840. 37 Khurram A, Yan L, Yin Y, et al. The Journal of Physical Chemistry C, 2019, 123(30), 18222. 38 Monteiro M C O, Dattila F, Hagedoorn B, et al. Nature Catalysis, 2021, 4(8), 654. 39 Shen K, Cheng D, Reyes-Lopez E, et al. Joule, 2023, 7(6), 1260. 40 Safipour J, Weber A Z, Bell A T. ACS Energy Letters, 2023, 8(12), 5012. 41 Bruggeman D F, Rothenberg G, Garcia A C. Nature Communications, 2024, 15(1), 9207. 42 Hori Y, Suzuki S. Journal of The Electrochemical Society, 1983, 130(12), 2387. 43 Fink A G, Lees E W, Gingras J, et al. Journal of Inorganic Biochemistry, 2022, 231, 111782. 44 Kang J S, Kim S, Hatton T A. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100504. 45 Kortlever R, Tan K H, Kwon Y, et al. Journal of Solid State Electrochemistry, 2013, 17(7), 1843. 46 Sreekanth N, Phani K L. Chemical Communications, 2014, 50(76), 11143. 47 Dunwell M, Lu Q, Heyes J M, et al. Journal of the American Chemical Society, 2017, 139(10), 3774. 48 Ooka H, Figueiredo M C, Koper M T M. Langmuir, 2017, 33(37), 9307. 49 Zhu S, Jiang B, Cai W B, et al. Journal of the American Chemical Society, 2017, 139(44), 15664. |
|
|
|