| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| PerformanceStudy of Bismuth Vanadate Photocatalyst Prepared Using Biological Template Method for Degradation of TCH in Wastewater |
| QIAN Sheng1,2,3, YANG Yijie1,2,3, MIAO Yingrong1,2,3, FANG Yingtong1,2,3, LI Xingyong1,2,3,4, LIU Na1,2,3,4, ZHANG Wei1,2,3,4,*, HU Peng1,2,3,4, CHEN Yubao1,2,3,4,*
|
1 School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China 2 Key Laboratory of Biomass Green Energy and Platform Compounds, Yunnan Provincial Department of Education, Kunming 650500, China 3 International R & D Centre for Low Carbon Agriculture and Green Development Technology of Yunnan Province, Kunming 650500, China 4 Yunnan Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China |
|
|
|
|
Abstract The widespread use of antibiotics in medicine and agriculture has made water pollution a pressing issue, underscoring the urgent need for effective treatment technologies. Photocatalytic technology has gained significant attention for water treatment due to its environmentally friendly and efficient properties. In this study, high-performance BiVO4 catalysts have been designed and synthesized via the biotemplate method using single-phase bismuth vanadate (BiVO4). The photodegradation ability of tetracycline hydrochloride (TCH)-contained wastewater has been investigated. The MB catalyst synthesized using Sargassum as a template exhibited a large specific surface area of 1.238 3 m2/g, an average pore size 100% larger than that of the sol-gel prepared catalyst, and a superior photocarrier separation efficiency due to the smallest Nyquist radius, thereby enhancing the photocatalytic performance. As a result, MB demonstrated the best degradation efficacy among the tested catalysts, as it effectively catalyzed TCH degradation (degradation rate approached 70%) within a relatively short period (1 h). This study elucidated the preparation strategy and performance optimization of BiVO4, and may provide a potentially effective solution for treating antibiotics-contaminated water.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Wang R Y, Zhu P W, Liu J D, et al. Journal of Nanjing Agricultural University, 2025(2), 392 (in Chinese). 王若莹, 朱鹏伟, 刘嘉迪, 等. 南京农业大学学报, 2025(2), 392. 2 Daghrir R, Drogui P. Environmental Chemistry Letters, 2013, 11(3), 209. 3 Wen K H, Chen J M, Lin S P, et al. Housing Industry, 2024(10), 66 (in Chinese). 问凯宏, 陈静敏, 林卲澎, 等. 住宅产业, 2024(10), 66. 4 Qi W N. Microbial degradation mechanism of tetracycline antibiotics. Master’s Thesis, Guizhou Normal University, China, 2019 (in Chinese) 祁为宁. 四环素类抗生素的微生物降解机理. 硕士学位论文, 贵州师范大学, 2019. 5 Deng W Q, Liu R Y, Liang B Y, et al. China Ceramics, 2024, 60(10), 31 (in Chinese). 邓文强, 刘人源, 梁博宇, 等. 中国陶瓷, 2024, 60(10), 31. 6 Li S Z, Nie Y C, Keomeesay P, et al. Chemical Industry and Engineering Progress, 2024, 43(S1), 225 (in Chinese). 李帅哲, 聂懿宸, Keomeesay P, 等. 化工进展, 2024, 43(S1), 225. 7 Wang H. Preparation of bismuth vanadate composite photocatalytic material and the performance of visible light degradation of tetracycline wastewater. Master’s Thesis, Qingdao University of Science and Technology, China, 2023(in Chinese) 王辉. 钒酸铋复合光催化材料的制备及可见光下降解四环素废水性能研究. 硕士学位论文, 青岛科技大学, 2023. 8 Wang Q, Bai X, Zhang Y, et al. ACS Applied Nano Materials, 2020, 3(2), 1934. 9 Shi S Q, Zhang S C, Zhang D J, et al. Inorganic Chemicals Industry, 2021, 53(11), 114 (in Chinese). 史苏琦, 张守臣, 张迪嘉, 等. 无机盐工业, 2021, 53(11), 114. 10 Yu J, Kudo A. Advanced Functional Materials, 2006, 16(16), 2163. 11 Zhang J, Yan M, Yuan X, et al. Journal of Colloid and Interface Science, 2018, 529, 11. 12 Nie Y C, Li S Z, Gu W, et al. Materials Reports, 2025, 39(11), 261 (in Chinese). 聂懿宸, 李帅哲, 顾雯, 等. 材料导报, 2025, 39(11), 261. 13 Liu A P, Yu C. Materials Reports, 2018, 32(S2), 195. 刘爱平, 郁超. 材料导报, 2018, 32(S2), 195. 14 Yu Y J, Li J R, Zhou S F, et al. Journal of Chemical Industry and Engineering(China), 2023, 74(7), 2735 (in Chinese). 余娅洁, 李静茹, 周树锋, 等. 化工学报, 2023, 74(7), 2735. 15 Wang X, Shen Y, Zuo G, et al. Materials Technology, 2016, 31(3), 176. 16 Liu L, Hu J, Ma Z, et al. Nature Communications, 2024, 15(1), 305. 17 Lotfi S, Ouardi M E, Ahsaine H A, et al. Catalysis Reviews, 2022, 66(1), 214. 18 Zexer N, Kumar S, Elbaum R. Annals of Botany, 2023, 131(6), 897. 19 Xu L, Tian J, Wu H, et al. Advances in Colloid and Interface Science, 2018, 256, 340. 20 Yuan J, Feng W, Zhang Y, et al. Advanced Materials, 2023, 36(5), 2303845. 21 Zhao YY, Fan J Y, Wei J, et al. Materials Reports, 2023, 37(5), 59 (in Chinese). 赵艳艳, 范敬煜, 魏景, 等. 材料导报, 2023, 37(5), 59. 22 Chen X, Li P, Gao S, et al. New Journal of Chemistry, 2023, 47(28), 13169. 23 Xie X, Shang L, Xiong X, et al. Advanced Energy Materials, 2021, 12(3), 2102688. 24 Wu X, Zhang H, Zuo S, et al. Nano-Micro Letters, 2021, 13(1), 136. 25 Liu Z, Song C, Zuo W, et al. Journal of Biobased Materials and Bioenergy, 2024, 18(2), 192. 26 Li P S, Wang Q. Journal of Liaocheng University(Nat. Sci. ) 2019, 32(3), 46 (in Chinese). 李沛珅, 王强. 聊城大学学报(自然科学版), 2019, 32(3), 46. 27 Zhang F, Xiao X, Xiao Y. Journal of Alloys and Compounds, 2022, 923, 166417. 28 Liu K, Tian W, Hui B, et al. Materials Science and Engineering R, 2024, 160, 100827. 29 Dai Y, Liu M, Li J, et al. Separation Science and Technology, 2019, 55(5), 1005. 30 Sehaqui H, Zhou Q, Ikkala O, et al. Biomacromolecules, 2011, 12(10), 3638. 31 Yang Y. Research on lignin deposition, quantification and pretreatment of stem cell wall lignin of several herbaceous plants. Master’s Thesis, Lanzhou University, China, 2016(in Chinese) 杨阳. 几种草本植物茎细胞壁木质素沉积、定量和预处理研究. 硕士学位论文, 兰州大学, 2016. 32 Wang S, Cheng A, Liu F, et al. Industrial Chemistry and Materials, 2023, 1(2), 188. 33 Huang Z W, Guo W Q, Jiang Z, et al. Journal of Molecular Catalysis, 2019, 33(1), 10 (in Chinese). 黄政文, 郭伟琦, 江治, 等. 分子催化, 2019, 33(1), 10. 34 Tai R, Gao S, Tang Y, et al. Small, 2024, 20(29), 2310785. 35 Zhong Y, Wang Y, Miao X D, et al. Advances in Environmental Protection, 2019, 9(5), 657. 钟艺, 王燕, 缪旭东, 等. 环境保护前沿, 2019, 9(5), 657. 36 Tayyebi A, Soltani T, Lee B K. Journal of Colloid and Interface Science, 2018, 534, 37. |
|
|
|