| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Fabrication of Modified Nano-CeO2 and Their Composite Fibrous Membranes for Enhanced Phosphorus Activity: an in vitro Study |
| LI Yuping1, ZHAO Qing2, ZHANG Jinzheng1, LEI Xiaoyu1, LI Li1, MU Bo1, DU Qingda1, LI Yubao1, WANG Jian3, ZUO Yi1,*
|
1 Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China 2 The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, China 3 College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China |
|
|
|
|
Abstract Cerium oxide nanoparticles (CeO2 NPs) were synthesized via a chemical precipitation method and subsequently surface-modified with sodium citrate (MCeO2) to enhance their dispersibility and enzyme-mimetic catalytic properties. Morphological characterization was performed using transmission electron microscopy (TEM), while X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were employed for semi-quantitative analysis of Ce3+ content and relative oxygen vacancy concentration. The findings show that although the citrate modification reduces both Ce3+ content and oxygen vacancy concentration, it significantly improves the catalytic dephosphorylation activity and dispersibility of MCeO2. Further fabrication of polyurethane-supported MCeO2 fiber membranes via electrospinning demonstrates that the modified MCeO2 maintains excellent dispersibility within the polymer matrix even at high loading concentrations, while exhibiting markedly superior catalytic dephosphorylation efficiency compared to unmodified sample. CCK-8 assays confirm good cytocompatibility, and alkaline phosphatase staining further reveals the osteogenic induction potential of these fiber membranes. This study provides valuable insights for developing nanocomposite biomaterials with optimal dispersibility and efficient catalytic dephosphorylation activity.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Zhao Q, Ni Y Q, Wei H J, et al. Periodontology 2000, 2024, 94(1), 213. 2 Kong X P, Zheng T Y, Wang Z Y, et al. Theranostics, 2024, 14(11), 4438. 3 Peng Y C, Zhuang Y L, Liu Y, et al. Exploration, 2023, 3(4), 20210043. 4 Li J Q, Cai X D, Jiang P, et al. Advanced Materials, 2024, 36(8), 2307337. 5 Hang C W, Moawad M S, Lin Z Y, et al. Journal of Nanobiotechnology, 2024, 22(1), 23. 6 Yang J X, Xiao S H, Deng J J, et al. Journal of Nanobiotechnology, 2024, 22(1), 21. 7 Janos P, Ederer J, Dosek M, et al. Environmental Science-Nano, 2019, 6(12), 3684. 8 Yue Z Y, Li J L, Tang M L, et al. Advanced Healthcare Materials, 2024, 13(9), 2303222. 9 Tang M L, Ni J T, Yue Z Y, et al. Angewandte Chemie-International Edition, 2024, 63(6), e202315031. 10 Panwar V, Singh A, Bhatt M, et al. Signal Transduction and Targeted Therapy, 2023, 8(1), 25. 11 Sabouny R, Shutt T E. Trends in Biochemical Sciences, 2020, 45(7), 564. 12 Hernando N, Gagnon K, Lederer E. Physiological Reviews, 2021, 101(1), 1. 13 Wang X G, Yu Y M, Ji L L, et al. Bioactive Materials, 2021, 6(12), 4517. 14 Ha M K, Shim Y J, Yoon T H. Environmental Science-Nano, 2018, 5(2), 446. 15 Panferov V G, Zhang W J, D’Abruzzo N, et al. ACS Nano, 2024, 18(51), 34870. 16 Zhang J, Wang Z H, Lin X E, et al. Angewandte Chemie-International Edition, 2025, 64(4), e202416686. 17 Wei F, Neal C J, Sakthivel T S, et al. Bioactive Materials, 2023, 21, 547. 18 Shahroudi S, Parvinnasab A, Salahinejad E, et al. Carbohydrate Polymers, 2025, 349, 12. 19 Ren S S, Zhou Y, Zheng K, et al. Bioactive Materials, 2022, 7, 242. 20 Li J M, Kang F, Gong X S, et al. Faseb Journal, 2019, 33(5), 6378. 21 Hancock M L, Yokel R A, Beck M J, et al. Applied Surface Science, 2021, 535, 12. 22 Camacho-Ríos M L, Cristóbal-García J D, Lardizabal-Gutiérrez D, et al. Ceramics International, 2020, 46(11), 18791. 23 Manto M J, Xie P F, Wang C. ACS Catalysis, 2017, 7(3), 1931. 24 Zhao Q, Chen J Q, Tang J J, et al. Advanced Functional Materials, 2024, 34(25), 2316428. 25 International Organization for Standardization. ISO. Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity, Switzerland, 2009, pp. 34. 26 An C, Zhou Y H, Chen C H, et al. Advanced Materials, 2020, 32(38), 2002352. 27 Marler B, Oberhagemann U, Vortmann S, et al. Microporous Materials, 1996, 6(5-6), 375. 28 Venkataronappa A, Bankaitis J, Seo J. Journal of Industrial and Engineering Chemistry, 2024, 138, 623. 29 Wu Z L, Li M J, Howe J, et al. Langmuir, 2010, 26(21), 16595. 30 López J M, Gilbank A L, García T, et al. Applied Catalysis B-Environmental, 2015, 174, 403. 31 Boonprasertpoh A, Chantarangkul P, Thiangtham S, et al. Cellulose, 2024, 31(5), 2957. 32 Gode F, Guneri E, Baglayan O. Applied Surface Science, 2014, 318, 227. 33 Chen W W, Liu Z L, Li Y X, et al. Journal of Power Sources, 2021, 482, 228947. 34 Yang H, Zheng M, Zhang Y, et al. Biomaterials translational, 2024, 5(1), 59. 35 Guo W Y, Wang W H, Xu P Y, et al. Biomaterials translational, 2024, 5(2), 114. 36 Chen J Q, Zhao Q, Tang J J, et al. ACS Applied Materials & Interfaces, 2024, 16(26), 33005. 37 Silina E V, Stupin V A, Manturova N E, et al. International Journal of Molecular Sciences, 2023, 24(19), 24. 38 An J, Yang H, Zhang Q, et al. Life Sciences, 2016, 147, 46. |
|
|
|