SPECIAL TOPIC: UHPC MATERIAL AND ENGINEERING APPLICATION |
|
|
|
|
|
Seismic Performance Analysis for RC Frames with Concrete-filled Precast RPC Tubular Columns |
JIANG Youbao, WU Linhua, CHEN Zhimao
|
School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114 |
|
|
Abstract An innovative column, named concrete-filled precast RPC tubular column, was presented in this paper. In this composite column, concrete was casted into precast RPC tube and steel bar were arranged in both concrete filled inside and precast RPC tube. Using the assumption of plane section, the formulas on bearing capacity was obtained for this column with large eccentricity compression based on the prescribed constitutive laws of RPC, concrete and steel. Bearing capacity analysis was performed for the columns with 2 different sections by the obtained formulas and the Opensees fiber model, respectively. The capacity results obtained by these two methods were closed to each other. Considering variations of parameters: the ratio of column bearing capacity to beam bearing capacity and steel grade arranged in precast RPC tube, seismic performance of RC frames with the columns was also analyzed by the Opensees fiber model. It showed that: the energy dissipation and ductility can be improved dramatically with the steel grade equal to or higher than HRB400 arranged in precast RPC tube; with the increase of the ratio of column bea-ring capacity to beam bearing capacity, the seismic performance can be improved minorly when the ratio not larger than 1.2, but can be improved dramatically when the ratio equal to or larger than 1.5.
|
Published: 10 December 2017
Online: 2018-05-08
|
|
|
|
1 Richard P, Cheyrezy M. Reactive powder concretes with high duc-tility and 200—800 MPa compressive strength[J]. ACI Special Publication, 1994, 114:507. 2 Richard P, Cheyrezy M. Composition of reactive powder concretes[J]. Cem Concr Res, 1995, 25(7):1501. 3 Maroliya M K. Micro-structure analysis of reactive powder concrete[J]. Int J Eng Res Develop, 2012, 4(2):68. 4 Zheng Wenzhong, Lv Xueyuan. Literature review of reactive powder concrete[J]. J Build Struct, 2015, 36(10):44(in Chinese). 郑文忠,吕雪源.活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10):44. 5 Bu Liangtao, Tao Jianjian, Duan Wenfeng, et al. Experimental study on axial compression performance of reinforced concrete co-lumns[J]. Build Struct, 2014, 44(11):8(in Chinese). 卜良桃, 陶剑剑, 段文峰, 等. 活性粉末混凝土加固钢筋混凝土柱轴压性能试验研究[J]. 建筑结构,2014,44(11):8. 6 Tong Xiaolong, Fang Zhi. Study on semismic performance of super high-rise structure with reactive powder concrete[J]. Build Struct, 2016,46(3):6(in Chinese). 童小龙, 方志. 活性粉末混凝土超高层结构抗震性能研究[J]. 建筑结构, 2016, 46(3):6. 7 Wang Jun, Wang Zhibin, Li Lun. Mechanical behavior of reinforced concrete short columns with steel fiber RPC column-permanent templated to axial compression[J]. J Architecture Civil Eng, 2016, 33(2):98(in Chinese). 王钧, 王志彬, 李论. 配有钢纤维PRC免拆柱模的钢筋混凝土短柱轴压力学性能[J]. 建筑科学与工程学报, 2016, 33(2):98. 8 Ye Lieping, Qu Zhe, Ma Qianli, et al. Study on ensuring the strong column weak beam mechanism for RC frames based on the damage analysis in the Wenchuan earthquake[J].Build Struct,2008,38(11):52(in Chinese). 叶列平, 曲哲, 马千里, 等.从汶川地震框架结构震害谈“强柱弱梁”屈服机制的实现[J].建筑结构, 2008, 38(11):52. 9 Ye Lieping, Ma Qianli, Miao Zhiwei. Study on weak beam strong column design method of RC frame structures[J]. Eng Mech, 2010, 27(12):102(in Chinese). 叶列平, 马千里, 缪志伟.钢筋混凝土框架结构强柱弱梁设计方法的研究[J].工程力学, 2010, 27(12):102. 10 Jiang Youbao, Yang Weijun. Seismic adjustment coefficient of bea-ring capacity for RC frame columns with random characteristics of eccentricity[J]. J Central South University(Sci Technol), 2012, 43(7):2796(in Chinese). 蒋友宝, 杨伟军. 基于偏心距随机特性的RC框架柱承载力抗震调整系数[J].中南大学学报(自然科学版), 2012, 43(7):2796. 11 Jiang Youbao, Liao Gouyu, Xie Mingwu. Complex failure function and design reliability for RC frame columns and light-weight steel structures[J]. J Build Struct, 2014, 35(4):192(in Chinese). 蒋友宝, 廖国宇, 谢铭武. 钢筋混凝土框架柱和轻钢拱结构失效方程复杂特性与设计可靠度[J]. 建筑结构学报, 2014, 35(4):192. 12 Jiang Youbao, Yang Weijun. An approach based on theorem of total probability for reliability analysis of RC columns with random eccentricity[J]. Struct Safety, 2013, 41(1):37. 13 Gao Xiaowang, Wei Lian, Wei Chengji. Calibration of reliability level in the current Chinese seismic design code[J]. China Civil Eng J, 1987, 20(2):10(in Chinese). 高小旺, 魏琏, 韦承基.现行抗震规范可靠度水平的校准[J]. 土木工程学报, 1987,20(2):10. 14 GB50010-2010混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. 15 Tong Xiaolong. The study on seismic behavior and design method of reactive power concrete shear walls[D]. Changsha:Hunan University, 2016(in Chinese). 童小龙. 活性粉末混凝土剪力墙抗震性能及设计方法研究[D]. 长沙:湖南大学, 2016. 16 Li Hang. Experimental research on seismic behavior of frame with dismantled template of steel fiber reactive powder concrete[D]. Harbin:Northeast Forestry University, 2014(in Chinese). 李行. 配有钢纤维RPC免拆柱模的RC框架抗震性能试验研究[D]. 哈尔滨:东北林业大学,2014. 17 Ma Deyun. Sensitivity study of RC members’ reliability to random parameters[D]. Beijing:Beijing University of Technology, 2008(in Chinese). 马德云. 混凝土结构可靠性影响因素的敏感性研究[D]. 北京:北京工业大学, 2008. 18 Xu Haibin, Deng Zongcai. Experimental research on flexural behavior of prestressed ultra-high performance steel fiber concrete beams[J]. J Build Struct, 2014, 35(12):58(in Chinese). 徐海宾, 邓宗才. 预应力超高性能钢纤维混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(12):58. 19 Ding Hongyan, Liang Yuguo, Guo Yaohua. Experimental research on seismic behavior of storey-adding frame strengthened with CFRP sheet[J]. Ind Constr, 2015, 45(10):176(in Chinese). 丁红岩, 梁玉国, 郭耀华. 碳纤维布增强植筋加层框架抗震性能试验研究[J]. 工业建筑, 2015, 45(10):176. |
|
|
|