INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Study on the Effect of Concrete Pore Structure Characteristics on the Mechanical Properties Under Cryogenic Conditions |
CHENG Linian1,2, LIU Juanhong1,3,4,*, ZHOU Dawei1, GUO Lingzhi1, CHEN Deping1
|
1 School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 School of Architecture and Civil Engineering, Huangshan University, Huangshan 245041, Anhui, China 3 Research Institute of Urbanization and Urban Safety, University of Science and Technology Beijing, Beijing 100083, China 4 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract High-performance concrete has a broad future application prospect as all-concrete LNG storage tanks, lunar surface bases and other special engineering constructions. In this work, the evolution of macroscopic mechanical properties, microscopic pore structure, and pore water freezing behavior of concrete were investigated, various types of pore structures were analyzed using fractal dimensions, and established the relationship between porosity, relative strength increment, and fractal dimensions. The results show that when the temperature decreases, the strength increases, and the higher the water-to-binder ratio, the higher the strength increase;porosity decreases with the increase of water-to-binder ratio, and the pore structure of the composite cementitious material’s net slurry is primarily composed of small pores under 50 nm. The fractal dimension is linearly correlated with porosity, while the fractal dimension of gel pores increases with lower water-to-binder ratios. The correlation between fractal dimension and the relative strength growth rate at various cryogenic temperatures differed significantly, where it is negatively correlated with the strength growth rate at -45 ℃. The decrease in fractal dimension indicates the filling effect of ice in the gel pores is more pronounced, causing a decrease in fractal dimension and a reduction in strength. The DSC test shows an obvious crystallization exothermic peak around -45 ℃, which is positively correlated with the water-to-binder ratio. The heat absorption that occurring at -105 ℃ may be associated with a crystalline transition in the pore ice structure, causing a sudden change in the correlation coefficient between the fractal dimension and the strength growth rate. The research results provide a reference for investigating the evolution law of mechanical properties of concrete during the process of cryogenic cooling.
|
Published: 10 July 2025
Online: 2025-07-21
|
|
|
|
1 Kogbara R B, Iyengar S R, Grasley Z C, et al.Construction and Building Materials, 2013, 47, 760. 2 Jiang Z W, Zhang N, Li X Y, et al.Materials Reports, 2011, 25(13), 1 (in Chinese). 蒋正武, 张楠, 李雄英, 等. 材料导报, 2011, 25(13), 1. 3 Lin H, Han Y, Liang S, et al.Construction and Building Materials, 2022, 345, 128287. 4 Jiang Z W, He B, Zhu X P, et al.Construction and Building Materials, 2020, 257, 119456. 5 Dahmani L, Khenane A, Kaci S.Cryogenics, 2007, 47(9-10), 517. 6 Krstulovic-Opara N.ACI Materials Journal, 2007, 104(3), 297. 7 Van de Veen. In:Report Stevin Laboratory, Concrete Structures. Netherlands, 1987, pp. 25. 8 Monfore G E, Lentz A E. In:Portland Cement Assoc R & D Lab Bull. Washington DC, USA, 1962, pp. 33. 9 Liu C. Experimental investigations on mechanical property of concrete exposed to low temperatures. Master’s Thesis, Tsinghua University, China, 2011(in Chinese). 刘超. 混凝土低温受力性能试验研究. 硕士学位论文, 清华大学, 2011. 10 Tognon G. In:Fifth International Symposium on the Chemistry of Cement. Tokyo, Japan, 1968, pp. 229. 11 Miura T.Materials and Structures, 1989, 22(4), 243. 12 Zhang Y S, Zhang W H, Chen Z Y.Materials Reports, 2017, 31(23), 1 (in Chinese). 张云升, 张文华, 陈振宇. 材料导报, 2017, 31(23), 1. 13 Marshall A L.Cryogenics, 1982, 22(11), 555. 14 Jiang Z W, Deng Z L, Zhu X P, et al.Cryogenics, 2018, 94, 5. 15 Rostasy F S, Schneider U, Wiedemann G.Cement and Concrete Research, 1979, 9(3), 365. 16 Li W Y, Yin J H, Wang J, et al.Journal of the Chinese Ceramic Society, 2022, 50(11), 2992 (in Chinese). 李文郁, 尹健昊, 王健, 等. 硅酸盐学报, 2022, 50(11), 2992. 17 He P, Yu J, Xue L, et al.Journal of Building Engineering, 2022, 55, 104696. 18 Zhao H, Qin X, Liu J, et al.Construction and Building Materials, 2018, 189, 934. 19 Li C J, Sun Z P, Li Q, et al.Materials reports, 2016, 30(13), 133 (in Chinese). 李春景, 孙振平, 李奇, 等. 材料导报, 2016, 30(13), 133. 20 McDonald P J, Mitchell J, Mulheron M, et al.Cement and Concrete Research, 2007, 37(3), 303. 21 Korb J P, Monteilhet L, McDonald P J, et al.Cement and concrete research, 2007, 37(3), 295. 22 Huang G S, Su L, Xue C Z, et al.Acta Materiae Compositae Sinica. DOI:10.13801/j.cnki.fhclxb.20240520.002 (in Chinese). 黄观送, 苏丽, 薛翠真, 等. 复合材料学报, DOI:10.13801/j.cnki.fhclxb.20240520.002. 23 Yang J Z, Zhang R L, Xue Y J, et al.Materials Reports, DOI:10.11896/cldb.24020033 (in Chinese). 杨军兆, 张戎令, 薛彦瑾, 等. 材料导报, DOI:10.11896/cldb.24020033. 24 Jiang Z, He H, Tian G L, et al.Fractal and Fractional, 2024, 8(1), 42. 25 State Administration for Market Regulation, Standardization Administration.Sand for construction, GB/T 14684-2022. Standards Press of China, China, 2022 (in Chinese). 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂:GB/T 14684-2022. 中国标准出版社, 2022. 26 Ministry of Housing and Urban-Rural Development of the People’s Republic of China.Standard for test methods of concrete physical and mechanical properties:GB/T 50081-2019. China Architecture & Building Press, China, 2019 (in Chinese). 中华人民共和国住房与城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081-2019. 中国建筑工业出版社, 2019. 27 Brun, M, Lallemand A, Quinson J F, et al.Thermochimica Acta, 1977, 21(1), 59. 28 Wu Z W, Lian H Z.High performance concrete, China Railway Press, China, 1999 (in Chinese). 吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999. 29 Mehta P K, Monteiro P J.Concrete, microstructure, properties, and materials, McGraw-Hill Education, New York, 2014. 30 Yu A M, Ma K, Wang Z P, et al.Journal of Building Materials, 2021, 24(5), 916(in Chinese). 佘安明, 马坤, 王中平, 等. 建筑材料学报, 2021, 24(5), 916. 31 Faure P F, Caré S, Magat J, et al.Construction and Building Materials, 2012, 29, 496. 32 Yao Y B, Liu D M, Che Y, et al.Fuel, 2010, 89(7), 1371. 33 Cai Y D, Liu D M, Pan Z J, et al.Fuel, 2013, 108, 292. 34 Valori A, McDonald P J, Scrivener K L.Cement and Concrete Research, 2013, 49, 65. 35 Rifai H, Staude A, Meinel D, et al.Cement and Concrete Research, 2018, 111, 72. 36 Bhattacharja S, Moukwa M, D’Orazio F, et al.Advanced Cement Based Materials, 1993, 1(2), 67. 37 Han Y D, Guo Y Q, Li J H, et al.Materials Reports, 2023, 37(3), 158 (in Chinese). 韩宇栋, 郭奕群, 李嘉豪, 等. 材料导报, 2023, 37(3), 158. 38 Tang Y J, Zuo X B, He S L, et al.Journal of the Chinese Ceramic Society, 2016, 44(11), 1579(in Chinese). 汤玉娟, 左晓宝, 何绍丽, 等. 硅酸盐学报, 2016, 44(11), 1579. 39 Yan P Y, Yang W Y, Cui L, et al.Journal of Building Materials, 1998(1), 70(in Chinese). 阎培渝, 杨文言, 崔路, 等. 建筑材料学报, 1998(1), 70. 40 Zhang Q Q, Liu J Z, Zhang L H, et al.Materials Reports, 2020, 34(22), 22054(in Chinese). 张倩倩, 刘建忠, 张丽辉, 等. 材料导报, 2020, 34(22), 22054. 41 Zhang B, Li S.Industrial & Engineering Chemistry Research, 1995, 34(4), 1383. 42 Han X, Feng J J, Wang B M.Cement and Concrete Composites, 2023, 139, 105052. 43 Yin T Y, Jin L, Liu K N, et al.Construction and Building Materials, 2024, 427, 136287. 44 Monteiro P J, Rashed A I, Bastacky J, et al.Cement and Concrete Research, 1989, 19(2), 306. 45 Usherov-Marshak A V, Zlatkovskii O A.Colloid Journal, 2002, 64(2), 217. 46 Sun Z, Scherer G W.Cement and Concrete Research, 2010, 40(5), 740. 47 Wang K W, Monteiro P J, Rubinsky B, et al.ACI Materials Journal, 1996, 93(4), 370. 48 Chatterji S.Cement and Concrete Research, 1999, 29(4), 627. 49 Liu L, Ye G, Schlangen E, et al.Cement and Concrete Composites, 2011, 33(5), 562. 50 Sun Z, Scherer G W.Cement and Concrete Research, 2010, 40(2), 260. 51 He B, Xie M J, Jiang Z W, et al.Construction and Building Materials, 2020, 243, 118256. 52 Yang Z F, Weiss W J, Olek J.Journal of materials in Civil Engineering, 2006, 18(3), 424. 53 Wu M, Johannesson B, Geiker M.Journal of Thermal Analysis and Calorimetry, 2014, 115, 1335. 54 Quigley D.The Journal of Chemical Physics, 2014, 141(12), 121101. 55 Murray B J, Knopf D A, Bertram A K.Nature, 2005, 434(7030), 202. 56 Li M D, Zhang J, Niu H Y, et al.The Journal of Physical Chemistry Letters, 2022, 13(36), 8601. 57 Rosu-Finsen A, Davies M B, Amon A, et al.Science, 2023, 379(6631), 474. 58 Mrevlishvili G M, Privalov P L.Journal of Structural Chemistry, 1968, 9(1), 5. |
|
|
|