INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Study on Preparation of Graphene-loaded Molybdenum Disulfide by Freeze-Drying Method and Its Lubrication Performance |
PENG Runling*, WANG Wei, LIU Jinyue, GAO Zhan, GUO Junde, ZHANG Geng
|
School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China |
|
|
Abstract In order to control the preparation of graphene and molybdenum disulfide lubricating oil nanoadditives and further improve their wide-temperature-range lubrication performance, graphene loaded molybdenum disulfide (RGO/MoS2) nanoparticles were prepared via a one-step freeze-drying method. The microstructure and morphology of the nanoparticles were observed by means of scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The correlation between process parameters and the microstructure of RGO/MoS2 was explored through ortho-gonal experiments, and the anti-friction and anti-wear performance of RGO/MoS2 at different temperatures was studied. The results showed that the nanoflower-like spherical RGO/MoS2 nanoparticles prepared by freeze-drying method uniformly adsorbed on the defect positions on the RGO surface with its thin sheets overlapped with each other, hence exhibited excellent dispersion and stability performance. The factors affecting the thickness of MoS2 layers in RGO/MoS2 could be sorted as: freezing method > reaction temperature > reaction time > reaction pH value. The optimal preparation conditions determined included:-20 ℃ freezing, reaction temperature 180 ℃, reaction time 24 h, and reaction pH=1. RGO/MoS2 as a lubricating oil additive has better friction reduction and wear resistance than MoS2 single agent at high temperatures. The addition of 1.5wt% RGO/MoS2 as a lubricating oil additive could achieve an average friction coefficient and a wear rate of only 0.062 5 and 2.95×10-9 cm3/(N·m), respectively, under high temperature conditions of 250 ℃, 54.3% and 74.5% lower than those acquired by MoS2 single agent.
|
Published: 25 April 2025
Online: 2025-04-18
|
|
|
|
1 Zhou J F, Wu Z S, Zhang Z J, et al. Wear, 2001, 249(5-6), 333. 2 Fan Z R, Kong Y Y, Li Y H, et al. Journal of Synthetic Crystals, 2019, 48(7), 1190 (in Chinese). 樊子冉, 孔洋洋, 李宇豪, 等. 人工晶体学报, 2019, 48(7), 1190. 3 Yan R, Wo X Y, Wang Y, et al. Materials Reports, 2023, 37(15), 67 (in Chinese). 颜睿, 沃虓野, 王豫, 等. 材料导报, 2023, 37(15), 67. 4 Li J H, Zhu Y D, Zhang Y M, et al. Chinese Journal of Chemical Engineering, 2018, 26(12), 2412. 5 Zhang S S, Zhao J G, Zhang J, et al. CIESC Journal, 2018, 69(10), 4479 (in Chinese). 张姗姗, 赵建国, 张进, 等. 化工学报, 2018, 69(10), 4479. 6 Singh E, Kim K S, Yeom G Y, et al. ACS Applied Materials & Interfaces, 2017, 9(4), 3223. 7 Xiang S, Lu P, Shi W N, et al. Chemical Industry and Engineering Progress, 2023, 42(9), 4783 (in Chinese). 向硕, 卢鹏, 石伟年, 等. 化工进展, 2023, 42(9), 4783. 8 Deng H, Guo Y L, He F F, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(8), 626. 9 Wu J M, Chang W E, Chang Y T, et al. Advanced Materials, 2016, 28(19), 3718. 10 Tsai D S, Liu K K, Lien D H, et al. ACS Nano, 2013, 7(5), 3905. 11 Splendiani A, Sun L, Zhang Y B, et al. Nano Letters, 2010, 10(4), 1271. 12 Cai J W, Feng K Q, Wang H B, et al. Materials Reports, 2024, 38(1), 158 (in Chinese). 蔡锦文, 冯可芹, 王海波, 等. 材料导报, 2024, 38(1), 158. 13 Guo J D, Peng R L, Du H, et al. Nanomaterials, 2020, 10(2), 200. 14 Mei T J, Guo J D, Tong Z, et al. Journal of Xi'an Jiaotong University, 2019, 53(2), 24 (in Chinese). 梅堂杰, 郭俊德, 仝哲, 等. 西安交通大学学报, 2019, 53(2), 24. 15 Zhao J X, Dai L Y, Wei Y K, et al. Materials Reports, 2024, 38(2), 238 (in Chinese). 晁昀暄, 戴乐阳, 魏钰坤, 等. 材料导报, 2024, 38(2), 238. 16 Ba Z W, Huang G W, Qiao D, et al. Friction, 2019, 39(2), 140 (in Chinese). 巴召文, 黄国威, 乔旦, 等. 摩擦学学报, 2019, 39(2), 140. 17 Gupta D, Chauhan V, Kumar R. Inorganic Chemistry Communications, 2020, 121, 108200. 18 Windom B C, Sawyer W G, Hahn D W. Tribology Letters, 2011, 42, 301. 19 Bai G L, Wu Z Z. Lubrication Engineering, 2013, 38(4), 93. 20 Vellore A, Romero Garcia S, Johnson D A, et al. Tribology Letters, 2021, 69, 1. 21 Zhang L N, Tan X F, Jiao J G, et al. Friction, 2024, 12(1), 110. 22 Zhang S T, Zhao H C, Qiao Y L. Materials Reports, 2019, 32(24), 4235 (in Chinese). 张世堂, 赵海朝, 乔玉林. 材料导报, 2019, 32(24), 4235. 23 Qin J, Liu T X, Wang J, et al. Chemical Industry and Engineering Progress, 2022, 41(9), 4973 (in Chinese). 秦建, 刘天霞, 王建, 等. 化工进展, 2022, 41(9), 4973. 24 Xu Y F, Geng J, Peng Y B, et al. Tribology International, 2018, 121, 241. 25 He J Q, Sun J L, Choi J, et al. Friction, 2023, 11(3), 441. 26 Peng R L, Wang W, Wang P, et al. Lubrication Science, 2023, 35(4), 270. 27 Wang L F, Ma T B, Hu Y Z, et al. Nanotechnology, 2014, 25(38), 385701. 28 Hou K M, Wang J Q, Yang Z G, et al. Carbon, 2017, 115, 83. 29 Liu S W, Wang H P, Xu Q, et al. Nature Communications, 2017, 8(1), 14029. 30 Wang L, Tieu A K, Ma M, et al. Friction, 2022, 10(11), 1810. 31 Xue S Q, Li H L, Guo Y M, et al. Friction, 2022, 10(7), 977. 32 Fu J G, Li S Y, Ma S L, et al. Science Technology and Engineering, 2019, 19(11), 110 (in Chinese). 付景国, 李思远, 马圣林, 等. 科学技术与工程, 2019, 19(11), 110. 33 Shi Y M, Li H N, Wong J I, et al. Scientific Reports, 2015, 5(1), 10378. 34 Bahuguna A, Kumar S, Sharma V, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 8551. 35 Meng X Y, Yu L, Ma C, et al. Nano Energy, 2019, 61, 611. 36 Peng R L, Yin S S, Wei Y, et al. Vacuum, 2019, 56(5), 77 (in Chinese). 彭润玲, 尹沙沙, 韦妍, 等. 真空, 2019, 56(5), 77. 37 Cao X, Shang Y P, Meng K J, et al. Journal of Energetic Materials, 2019, 37(3), 356. 38 Zhang F, Ma X Y, Wu X S, et al. Drying Technology, 2020, 38(1-2), 71. 39 Hu W Q, Dong Z, Wang H, et al. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105453. 40 Peng R L, Guo J D, Han S X, et al. Materials Research Express, 2020, 7(2), 025028. |
|
|
|