POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Thermophysical Properties and Thermal Storage Applications of Imidazole Ionic Liquid Based Medium and Low Temperature Phase Change Materials |
WANG Shaohui1,2, LI Qi1,*, ZHOU Meimei1, YANG Chunyun1, XIE Huicheng1, WU Yuting1, LU Yuanwei1
|
1 Beijing Key Laboratory of Heat Transfer and Energy Utilization, National Energy User-Side Energy Storage Innovation Research and Development Center, Beijing University of Technology, Beijing 100124, China 2 Qingdao Haier Air Conditioner Electric Co.,Ltd., Qingdao 266103, Shandong, China |
|
|
Abstract Ionic liquids (ILs) have the advantages of adjustable phase transition temperature, low non-flammability/volatility, good thermal and chemical stability in terms of thermal physical properties, and are increasingly receiving attention in the field of thermal energy storage. Recently, NASA utilized eutectic phase change materials (PCM) composed of functional ionic liquids to manage the extreme space environment (solar ra-diation and extreme cold/hot) of manned spacecraft for future deep exploration. Although the concept of storing latent heat during the phase transition of ionic liquids is well-known, it has not yet been adopted in large-scale applications, and its potential still needs to be further explored. At present, most research focuses on the performance of ionic liquids as heat transfer fluids, with little research and application on their phase change energy storage. The purpose of this article is to provide necessary information for selecting well-researched ionic liquids and promote further research in this field. The article first discusses the defects of traditional phase change materials, and then reviews and summarizes commonly used ionic liquids from the aspects of chemical structure, phase change mechanism, and thermophysical properties. Finally, the application of ionic liquid-based phase change materials was introduced in detail. This paper proposed the structural design optimization of ionic liquids (ILs), undercooling control strategies, enthalpy enhancement pathways, and preparation cost control as research entry points, providing direction for subsequent research.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 Li J D, Chen S J, Wu Y Q, et al. Renewable and Sustainable Energy Reviews, 2021, 137, 110626. 2 Wang Y, Guo C H, Chen X J, et al. China Geology, 2021, 4(4), 720. 3 Cárdenas-Ramírez C, Jaramillo F, Gómez M. Journal of Energy Storage, 2020, 30, 101495. 4 Su W, Darkwa J, Kokogiannakis G. Renewable and Sustainable Energy Reviews, 2015, 48, 373. 5 Tahan Latibari S, Sadrameli S M. Solar Energy, 2018, 170, 1130. 6 Bayrak F, Oztop H F, Selimefendigil F. Energy Conversion and Management, 2020, 212, 112789. 7 Sharma N K, Gaur M K, Malvi C S. Materials Today: Proceedings, 2021, 47, 6759. 8 Du K, Calautit J, Wang Z H, et al. Applied Energy, 2018, 220, 242. 9 Liu G H, Li Q T, Wu J Z, et al. Journal of Energy Storage, 2022, 51, 104435. 10 Pakdel E, Naebe M, Sun L, et al. ACS Applied Materials & Interfaces, 2019, 11(14), 13039. 11 Liu Y, Zheng R W, Li J. Renewable and Sustainable Energy Reviews, 2022, 168, 112783. 12 Pereira da Cunha J, Eames P. Applied Energy, 2016, 177, 227. 13 Hameed G, Ghafoor M A, Yousaf M, et al. Sustainable Energy Technologies and Assessments, 2022, 50, 101808. 14 Eanest Jebasingh B, Valan Arasu A. Materials Today Energy, 2020, 16, 100408. 15 Peng H, Zhang D, Ling X, et al. Energy & Fuels, 2018, 32(7), 7262. 16 Wu L M, Liu Q X, Wang X L, et al. Materials Reports, 2021, 35(Z1), 501 (in Chinese). 吴丽梅, 刘庆欣, 王晓龙, 等. 材料导报, 2021, 35(Z1), 501. 17 Venkatraman V, Evjen S, Knuutila H K, et al. Journal of Molecular Liquids, 2018, 264, 318. 18 Earle M J, Seddon K R. Pure and Applied Chemistry, 2000, 72(7), 1391. 19 Zhou T, Gui C M, Sun L G, et al. Chemical Reviews, 2023, 123(21), 12170. 20 Mezger M, Schröder H, Reichert H, et al. Science, 2008, 322(5900), 424. 21 Wong W P, Kagalkar A, Patel R, et al. Journal of Energy Storage, 2023, 74, 109265. 22 Jiang W F, Li X S, Gao G, et al. Chemical Engineering Journal, 2022, 445, 136767. 23 Wasserscheid P, Keim W. Angewandte Chemie Interational Edition, 2000, 39(21), 3772. 24 Wilkes J S, Zaworotko M J. Journal of the Chemical Society, Chemical Communications, 1992(13), 965. 25 Silva A T, Teixeira C, Marques E F, et al. ChemMedChem, 2021, 16(17), 2604. 26 Zeng S J, Zhang X P, Bai L, et al. Chemical Reviews, 2017, 117(14), 9625. 27 zareiekordshouli F, Lashani-zadehgan A, Darvishi P. International Journal of Greenhouse Gas Control, 2016, 53, 328. 28 Schubert T J S. In: Commercial Applications of Ionic Liquids, Shiflett M. B. , Springer International Publishing, Germany 2020, pp. 191. 29 Gao Y R, Cao J F, Shu Y, et al. Green Chemical Engineering, 2021, 2(4), 368. 30 de Jesus S S, Maciel Filho R. Renewable and Sustainable Energy Reviews, 2022, 157, 112039. 31 Atkin R, Warr G G. The Journal of Physical Chemistry C, 2007, 111(13), 5162. 32 Sadanandhan A M, Khatri P K, Jain S L. Journal of Molecular Liquids, 2019, 295, 111722. 33 Vraneš M, Papović S, Rackov S, et al. The Journal of Chemical Thermodynamics, 2019, 139, 105871. 34 Weingärtner H. Angewandte Chemie International Edition, 2008, 47(4), 654. 35 Sun Y Q, Xu C Y, Igou T, et al. Applied Energy, 2018, 226, 461. 36 Wang H, Xie C X, Yu S T, et al. Chemical Engineering Journal, 2014, 237, 286. 37 Jia X C, Dou W B, Wang X P. Journal of Molecular Liquids, 2022, 364, 120031. 38 Ouyang M, Jiang Q W, Hu K H, et al. Journal of Molecular Liquids, 2022, 360, 119416. 39 Wang J F, Hao Y J, Zhu B J, et al. The Journal of Physical Chemistry B, 2022, 126(4), 985. 40 Abe H, Kishimura H. Journal of Molecular Liquids, 2022, 352, 118695. 41 Rotnicki K, Sterczyńska A, Fojud Z, et al. Journal of Molecular Liquids, 2020, 313, 113535. 42 anji M, Bendová M, Bogdanov M G, et al. Journal of Molecular Liquids, 2019, 292, 111222. 43 Paulechka Y U, Blokhin A V, Kabo G J, et al. Journal of Chemical Thermodynamics, 2007, 39(6), 866. 44 Berthod A, Ruiz-Ángel M J, Carda-Broch S. Journal of Chromatography A, 2018, 1559, 2. 45 Plechkova N V, Seddon K R. Chemical Society Reviews, 2008, 39(17), 123. 46 Welton T. Chemical Reviews, 1999, 99(8), 2071. 47 Wang B S, Qin L, Mu T C, et al. Chemical Reviews, 2017, 117(10), 7113. 48 Zalosh R, Gandhi P, Barowy A. Journal of Loss Prevention in the Process Industries, 2021, 72, 104560. 49 Zhu Y C, Shen H, Ji H, et al. Journal of Loss Prevention in the Process Industries, 2022, 79, 104837. 50 Deng Y Q. Ionic liquids property, preparation and application, China Petrochemical Press, China, 2006, pp. 377 (in Chinese). 邓友全. 离子液体-性质、制备与应用, 中国石化出版社, 2006, pp. 377. 51 Stejfa V, Rohlicek J, Cervinka C. Journal of Chemical Thermodynamics, 2021, 160, 106392. 52 Hasan M, Kozhevnikov I V, Siddiqui M R H, et al. Inorganic Chemistry, 1999, 38(25), 5637. 53 Xu C Q, Cheng Z M. Processes, 2021, 9(2), 337. 54 Liu Y R, Dai Z X, Zhang Z B, et al. Green Energy & Environment, 2021, 6(3), 314. 55 Li C C. Preparation of ionic liquid microcapsules and CO2 adsorption properties. Master's Thesis, China University of Mining and Technology, China, 2019 (in Chinese). 李灿灿. 离子液体微胶囊的制备及其CO2吸附性能. 硕士学位论文, 中国矿业大学. 北京, 2019. 56 Huang S, Wang Z H, Liu S L, et al. Journal of Molecular Liquids, 2020, 309, 113126. 57 Kobzar Y L, Fatyeyeva K. Chemical Engineering Journal, 2021, 425, 131480. 58 Deyab M A, Nessim M I, Haikal A, et al. Journal of Molecular Liquids, 2022, 355, 118984. 59 Rao C J, Venkatesan K A, Tata B V R, et al. Radiation Physics and Chemistry, 2011, 80(5), 643. 60 Qi W, Li M J, Zhao L. Radiation Physics and Chemistry, 2020, 168, 108596. 61 Asha S, Thomas D, Vijayalakshmi K P, et al. Journal of Molecular Liquids, 2021, 333, 115978. 62 Pimienta J A P, Papa G, Sun J, et al. Green Chemistry, 2022, 24(1), 207. 63 Sun J, Konda N V S N M, Parthasarathi R, et al. Green Chemistry, 2017, 19(13), 3152. 64 Papa G, Rodriguez S, George A, et al. Bioresource Technology, 2015, 183, 101. 65 https://www.alibaba.com/product-detail/Ionic-liquids-1-Ethyl-3-methylimidazolium_1600059642454.html?spm=a2700.galleryofferlist.normal_offer.d_title.63b32f249iUfo1 66 Liang X C, Wang J Y, Guo Y K, et al. Bioresource Technology, 2021, 330, 124984. 67 Aparicio S, Atilhan M, Karadas F. Industrial & Engineering Chemistry Research, 2010, 49(20), 9580. 68 Mora S, Neculqueo G, Tapia R A, et al. Journal of Molecular Liquids, 2019, 282, 221. 69 Rooney D, Jacquemin J, Gardas R. In: Ionic liquids, Kirchner B., Springer Berlin Heidelberg, Germany, 2010, pp. 185. 70 Anggraini Y, Sutjahja I M, Kurnia D, et al. Materials Today: Procee-dings, 2021, 44, 3188. 71 Piper S L, Kar M, MacFarlane D R, et al. Green Chemistry, 2022, 24(1), 102. 72 Zhang H, Xu W, Liu J R, et al. Journal of Molecular Liquids, 2019, 282, 474. 73 Valkenburg M E V, Vaughn R L, Williams M, et al. Thermochimica Acta, 2005, 425(1), 181. 74 Chen W J, Zou C J, Li X K. Solar Energy Materials and Solar Cells, 2017, 163, 157. 75 He G D, Fang X M, Xu T, et al. International Journal of Heat and Mass Transfer, 2015, 91, 170. 76 Fabre E, Murshed S M S. Journal of Materials Chemistry A, 2021, 9(29), 15861. 77 Zhu J Q, Bai L G, Chen B H, et al. Chemical Engineering Journal, 2009, 147(1), 58. 78 Ge R, Hardacre C, Nancarrow P, et al. Journal of Chemical & Engineering Data, 2007, 52(5), 1819. 79 Maton C, De Vos N, Stevens C V. Chemical Society Reviews, 2013, 42(13), 5963. 80 Hu Y F, Peng X M. In: Structures and interactions of ionic liquids, Zhang S J, Wang J J, Lu X M, et al., Springer Berlin Heidelberg, Germany, 2014, pp. 141. 81 Boldoo T, Lee M, Kang Y T, et al. Journal of Molecular Liquids, 2021, 341, 117356. 82 Boldoo T, Lee M, Cho H. International Journal of Energy Research, 2022, 46(7), 8891. 83 Zhang Z, Salih A A M, Li M, et al. Energy Fuels, 2014, 28(4), 2802. 84 Ma X C, Liu Y J, Liu H, et al. Solar Energy Materials and Solar Cells, 2018, 188, 73. 85 Liu J L, Yang W G, Li Z, et al. Journal of Molecular Liquids, 2020, 307, 112994. 86 Zhang H, Liu J R, Li M T, et al. Journal of Molecular Liquids, 2018, 269, 738. 87 Efimova A, Hubrig G, Schmidt P. Thermochimica Acta, 2013, 573, 162. 88 Liu J, Wang F X, Zhang L, et al. Renewable Energy, 2014, 63, 519. 89 Keshavarz M H, Pouretedal H R, Saberi E. Process Safety and Environmental Protection, 2018, 116, 333. 90 Urikhinbam S S, Shagolsem L S. Materials Today: Proceedings, 2022, 50, A34. 91 Kurtolu-ztulum S F, Jalal A, Uzun A. Journal of Molecular Liquids, 2022, 363, 119804. 92 Zheng J L, Li Z H, Zhang D S, et al. Journal of Molecular Liquids, 2022, 348, 118407. 93 Belesov A V, Shkaeva N V, Popov M S, et al. International Journal of Molecular Sciences, 2022, 23(18), 13. 94 Venkatraman V, Alsberg B K. Journal of Molecular Liquids, 2016, 223, 60. 95 Knorr M, Icker M, Efimova A, et al. Thermochimic Acta, 2020, 694, 178786. 96 Rezaeian M, Izadyar M, Housaindokht M R. Journal of Molecular Liquids, 2022, 349, 118486. 97 Zaripov Z I, Nakipov R R, Gumerov F M, et al. Journal of Molecular Liquids, 2022, 357, 119091. 98 Fröba A P, Rausch M H, Krzeminski K, et al. International Journal of Thermophysics, 2010, 31(11), 2059. 99 Atashrouz S, Hemmati-Sarapardeh A, Mirshekar H, et al. Journal of Molecular Liquids, 2016, 224, 648. 100 Oster K, Goodrich P, Jacquemin J, et al. The Journal of Chemical Thermodynamics, 2018, 121, 97. 101 Zhang H, Li M T, Yang B L. The Journal of Physical Chemistry C, 2018, 122(5), 2467. 102 Gómez E, Calvar N, Domínguez Á, et al. Fluid Phase Equilibria, 2018, 470, 51. 103 Ge R, Hardacre C, Jacquemin J, et al. Journal of Chemical & Engineering Data, 2008, 53(9), 2148. 104 Fareghi-Alamdari R, Hatefipour R. Thermochimic Acta, 2015, 617, 172. 105 Cui W, Li X X, Li X Y, et al. Applied Energy, 2022, 309, 118465. 106 Zhang H, Xu C L, Fang G Y. Solar Energy Materials and Solar Cells, 2022, 241, 111747. 107 Zhao Y, Zhang X L, Xu X F, et al. Journal of Energy Storage, 2020, 27, 101156. 108 Matsumoto K, Ueda J, Ehara K, et al. International Journal of Refrigeration, 2018, 85, 462. 109 Iwase K, Hikita Y, Yoshikawa I, et al. Journal of Physical Chemistry C, 2022, 126(26), 10668. 110 Tanaka D, Hijiya R, Wakamatsu T. Journal of Crystal Growth, 2021, 573, 126288. 111 Kang T Y, You Y S, Hoptowit R, et al. Journal of Food Engineering, 2021, 300, 110541. 112 Kenisarin M, Mahkamov K. Renewable and Sustainable Energy Reviews, 2007, 11(9), 1913. 113 Rebelo L P N, Lopes J N C, Esperanca J, et al. Accounts of Chemical Research, 2007, 40(11), 1114. 114 Abdelrazik M K, Abdelaziz S E, Hassan M F, et al. Energy Reports, 2022, 8, 11363. 115 Song C S, Lai W C, Schobert H H. Industrial & Engineering Chemistry Research, 1994, 33(3), 548. 116 Das L, Rubbi F, Habib K, et al. Journal of Molecular Liquids, 2021, 336, 116563. 117 Touazi A A, Didaoui S, Khimeche K, et al. Journal of Molecular Liquids, 2021, 327, 114860. 118 Wang J H, Zhai X Y, Zhong Z R, et al. Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2022, 636, 128162. 119 Mert H H, Kekev B, Mert E H, et al. Thermochimica Acta, 2022, 707, 179116. 120 Zheng X, Bao Y Q, Qu D, et al. The Journal of Chemical Thermodynamics, 2021, 162, 106566. 121 Liu J, Ye Z C, Zhang L, et al. Solar Energy Materials and Solar Cells, 2015, 136, 177. 122 Mehrkesh A, Karunanithi A T. Computers & Chemical Engineering, 2016, 93, 402. 123 Cherecheş E I, Bejan D, Ibanescu C, et al. Chemical Engineering Science, 2021, 229, 116140. 124 Wang J W, Tang X D, Qi Z W, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(6), 2248. 125 Das L, Habib K, Saidur R, et al. Nanomaterials (Basel), 2020, 10(7), 2. 126 NASA TechPort. https://techport.nasa.gov/view/90050 127 NASA TechPort. https://techport.nasa.gov/view/93647 128 Wadekar V V. Applied Thermal Engineering, 2017, 111, 1581. 129 Ikutegbe C A, Farid M M. Renewable and Sustainable Energy Reviews, 2020, 131, 110008. 130 Ben Romdhane S, Amamou A, Ben Khalifa R, et al. Journal of Building Engineering, 2020, 32, 101563. 131 Lee H Y, Cai Y F, Velioglu S, et al. Chemistry of Materials, 2017, 29(16), 6947. 132 Wei X J, Yu L P, Wang D H, et al. Green Chemistry, 2008, 10(3), 296. 133 Zhu J T, Huang A B, Ma H B, et al. ACS Applied Materials & Interfaces, 2016, 8(43), 29742. 134 Liu M, Zhang X W, Ma Y G, et al. Energy Conversion and Management, 2018, 161, 243. 135 Kang S, Chung Y G, Kang J H, et al. Journal of Molecular Liquids, 2020, 297, 1. 136 Haywood A, Sherbeck J, Phelan P, et al. Energy Conversion and Ma-nagement, 2012, 58, 26. 137 Kim Y J, Gonzalez M. International Journal of Refrigeration, 2014, 48, 26. 138 Xu R, Xia X M, Wang W, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2020, 591, 124519. 139 Shi H W, Zhang X, Sundmacher K, et al. Green Energy & Environment, 2021, 6(3), 392. |
[1] |
YANG Shiguan, CHEN Shuquan, WANG Jian, HE Junsong, CHENG Lin, ZHAI Lijun, LIU Hongxia, ZHANG Yan, SUN Zhigang. Study on Transient Cooling Law of Thermoelectric Cooler Based on Bismuth Telluride[J]. Materials Reports, 2025, 39(6): 24020052-16. |
|
|
|
|