METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Status of High-temperature Oxidation Behavior of Al-containing Heat-resistant Alloys |
YAO Tongrui1, WANG Man1, XI Xiaoli1,2,*
|
1 State Key Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, Beijing 100124, China 2 Collaborative Innovation Center of Capital Resource-Recycling Material Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract Heat-resistant alloys have important applicationsin high-temperature servicing environment due to their excellent oxidation resistance, among which nickel-based and iron-based heat-resistant alloys are more widely used. With the proposal of “dual carbon” strategic target, the continuously developed aerospace and energy technologies make the servicing environment harsher, which puts forward a greater challenge to heat-resistant alloys. Therefore, it is urgent to develop new types of heat-resistant alloys with superior high-temperature oxidation resistance. Protective Al2O3 film formed through addition of Al exhibits characteristics of low growth rate, high densification and excellent thermal stability, making Al-containing heat-resistant alloys apopular research topic recently. In this summary,the advantages and disadvantages of three kinds of protective oxide films were compared. Then, the development of Al-containing heat-resistant alloys was reviewed. Moreover, the key factors affecting the oxidation behavior of Al-containing nickel-based and iron-based alloys were analyzed, and the microscopic oxidation mechanism and common laws of the these alloys under high temperature were extracted. Finally, the problems existing at the present stage and the future development direction of Al-containing heat-resistant alloys were prospected.
|
Published: 25 March 2025
Online: 2025-03-24
|
|
|
|
1 Li D H, Wang K, Zhu X Y, et al. Materials and Corrosion-Werkstoffe Und Korrosion, 2022, 73(11), 1865. 2 Teng J W, Gong X J, Yang B B, et al. Corrosion Science, 2022, 198, 110141. 3 Ren J, Yu L M, Liu C X, et al. Corrosion Science, 2022, 195, 110008. 4 Wang M. Study on microstructure stability and mechanical properties of new austenitic steel. Ph. D. Thesis, Beijing University of Science and Technology, China, 2017 (in Chinese). 王曼. 新型奥氏体钢显微组织结构稳定性及力学性能的研究. 博士学位论文, 北京科技大学, 2017. 5 Sui X M, Hu J, Zhang L, et al. Surface Technology, 2020, 49(10), 18 (in Chinese). 隋欣梦, 胡记, 张林, 等. 表面技术, 2020, 49(10), 18. 6 Tang S F, Yang J, Tang P J, et al. Materials Engineering, 2023, 51(3), 12 (in chinese). 汤素芳, 杨嘉, 唐鹏举, 等. 材料工程, 2023, 51(3), 12. 7 Suryanarayana C, Al-Aqeeli N. Progress in Materials Science, 2013, 58(4), 383. 8 Li M S, Qian Y H, Xin L. Corrosion Science and Protection Technology, 1999, 11(5), 284 (in chinese). 李美栓, 钱余海, 辛丽. 腐蚀科学与防护技术, 1999, 11(5), 284. 9 Birks N, Meier G H, Pettit F S. Introduction to the high temperature oxidation of metals, Cambridge University Press, UK, 2006, pp. 134. 10 Ahmad B, Fox P. Oxidation of Metals, 1999, 52(1-2), 113. 11 Nguyen T D, Zhang J Q, Young D J. Corrosion Science, 2020, 170(1), 108702. 12 Ma S Y. The effect of alloying elements cr, al, and si on the oxidation resistance of nickel based high-temperature alloys. Master's Thesis, Zhejiang University, China, 2023 (in Chinese). 马苏钰. 合金元素Cr、Al和Si对镍基高温合金抗氧化性的影响. 硕士学位论文, 浙江大学, 2023. 13 Li X L, Chen B, Xing W W, et al. Journal of Materials Research, 2018, 32(12), 9 (in Chinese). 李小亮, 陈波, 邢炜伟, 等. 材料研究学报, 2018, 32(12), 9. 14 Yamamoto Y, Brady M P, Lu Z P, et al. Science, 2007, 316(5823), 433. 15 Berthod P. Oxidation of Metals, 2005, 64(3), 235. 16 Airiskallio E, Nurmi E, Heinonen M, et al. Corrosion Science, 2010, 52(10), 3394. 17 Niu Y, Zhang X J, Wu Y, et al. Corrosion Science, 2006, 48(12), 4020. 18 Xu Q, Zhang X H, Han C J, et al. Solid Rocket Technology, 2002, 25(3), 5 (in chinese). 徐强, 张幸红, 韩杰才, 等. 固体火箭技术, 2002, 25(3), 5. 19 Giggins C S, Pettit F S. Journal of the Electrochemical Society, 1971, 118(11), 1782. 20 Wang Q Z. Steel, 1981(4), 75 (in chinese). 王庆珠. 钢铁, 1981(4), 75. 21 Xu Y L, Fu H, Fan L J, et al. Corrosion Science, 2019, 161, 108192. 22 Yan J J, Huang X F, Huang W G. International Journal of Minerals, Metallurgy and Materials, 2020, 27(9), 1244. 23 Zhang Y B, Zou D N, Li Y N, et al. Journal of Materials Research and Technology, 2021, 11, 1730. 24 Kvernes I, Oliveira M, Kofstad P. Corrosion Science, 1977, 17(3), 237. 25 Brady M P, Yamamoto Y, Santella M L, et al. Scripta Materialia, 2007, 57(12), 1117. 26 Brady M P, Unocic K A, Lance M J, et al. Oxidation of Metals, 2011, 75(5-6), 337. 27 Brady M P, Yamamoto Y, Santella M L, et al. Oxidation of Metals, 2009, 72(5-6), 311. 28 Stott F H, Wood G C, Stringer J. Oxidation of Metals, 1995, 44(1-2), 113. 29 Brady M P, Wright I G, Gleeson B. JOM, 2000, 52(1), 16. 30 Xu X Q, Zhang X F, Chen G L, et al. Materials Letters, 2011, 65(21-22), 3285. 31 Xu X Q, Zhang X F, Sun X Y, et al. Oxidation of Metals, 2012, 78(5), 349. 32 Li Q, Song P, Li Z H, et al. Nuclear Materials and Energy, 2023, 34, 101381. 33 Narukawa T, Kondo K, Fujimura Y, et al. Journal of Nuclear Materials, 2023, 587(15), 154736. 34 Lipkina K, Hallatt D, Geiger E, et al. Journal of Nuclear Materials, 2020, 541(1), 152305. 35 Gamanov , Holzer J, Roupcová P, et al. Corrosion Science, 2022, 206, 110498. 36 Li Z Y, Chen L J, Zhang H Y, et al. Materials, 2021, 14(3), 526. 37 Stratil L, Horník V, Dymáek P, et al. Metals, 2020, 10(11), 1478. 38 McGurty J A. U. S. patent, 05/788396, 1978. 39 Ramakrishnan V, McGurty J A, Jayaraman N. Oxidation of Metals, 1988, 30(3), 185. 40 Rybicki G C, Smialek J L. Oxidation of Metals, 1989, 31(3), 275. 41 Brumm M, Grabke H J. Corrosion Science, 1992, 33, 1677. 42 Huang Y C, Peng X, Chen X Q. Journal of Alloys and Compounds, 2021, 863, 158666. 43 Huang Y C. Research on the phase transformation mechanism of high temperature thermal growth of aluminum oxide. Ph. D. Thesis, University of Science and Technology of China, China, 2019 (in Chinese). 黄渊超. 高温热生长氧化铝相变机理研究. 博士学位论文, 中国科学技术大学, 2019. 44 Lipkin D M, Clarke D R, Pompe W. Corrosion Science, 1997, 39(2), 231. 45 Peng X, Li T, Pan W P. Scripta Materialia, 2001, 44(7), 1033. 46 Yun D W, Seo S M, Jeong H W, et al. Journal of Alloys and Compounds, 2017, 710, 8. 47 Tang H P, Wang Y, Liu Y, et al. Journal of Central South University, 2013, 20(12), 3345. 48 Liu T, Wang C X, Shen H L, et al. Corrosion Science, 2013, 76, 310. 49 Liu T, Wang L B, Wang C X, et al. Corrosion Science, 2016, 104, 17. 50 Xia Y, Wang J, Meng H J, et al. Corrosion Science and Protection Technology, 2019, 31(2), 7(in Chinese). 夏焱, 王剑, 孟浩杰, 等. 腐蚀科学与防护技术, 2019, 31(2), 7. 51 Qiao Y J, Wang P, Qi W, et al. Journal of Alloys and Compounds, 2020, 828, 154310. 52 Palm M. Intermetallics, 2005, 13(12), 1286. 53 Airiskallio E, Nurmi E, Heinonen M H, et al. Corrosion Science, 2010, 52(10), 3394. 54 Zhang Z G, Gesmundo F, Hou P Y, et al. Corrosion Science, 2006, 48(3), 741. 55 Wagner C. Corrosion Science, 1965, 5(11), 751. 56 Josefsson H, Liu F, Svensson J E, et al. Materials and Corrosion, 2005, 56(11), 801. 57 Li D Q, Guo H B, Wang D, et al. Corrosion Science, 2013, 66, 125. 58 Pint B A, More K L, Tortorelli P F, et al. Materials Science Forum, 2001, 369, 411. 59 Cotell C M, Yurek G J, Hussey R J, et al. Oxidation of Metals, 1990, 34(3), 173. 60 Li D Q, Zhou L X, Xi Y P, et al. Journal of Alloys and Compounds, 2017, 692, 427. 61 Burtin P, Brunelle J P, Pijolat M, et al. Applied Catalysis, 1987, 34, 239. 62 Pint B A. Oxidation of Metals, 1996, 45(1), 1. 63 Gao W, Liu Z Y, Li Z. Advanced Materials, 2001, 13(12-13), 1001. 64 Li Q, Peng X, Zhang J Q, et al. Corrosion Science, 2010, 52(4), 1213. 65 Wang X Y, Xin L, Wang F H, et al. Journal of Materials Science & Technology, 2014, 30(9), 867. 66 Wang F S. Optimal Control Applications and Methods, 1993, 14(1), 39. 67 Rittenhouse J, Luebbe M, Hoffman A, et al. Corrosion Science, 2024, 226, 111688. 68 Sun D J, Liang C Y, Shang J L, et al. Applied Surface Science, 2016, 385, 587. 69 Stringer J, Wilcox B A, Jaffee R I. Oxidation of Metals, 1972, 5(1), 11. |
|
|
|