INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Ultra-sensitive Resistive Humidity Sensor Based on Cs4PbBr6 Nanocrystals |
GUO Hongbing1, LIU Yueli1,2,*
|
1 State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China 2 Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, Hainan, China |
|
|
Abstract In this work, Cs4PbBr6 nanocrystals were synthesized via a modified ligand-assisted reprecipitation method and a humidity sensor based on Cs4PbBr6 nanocrystals was assembled. Phase structure, micromorphology, energy band structure, optical properties and surface state were characterized. Humidity sensing performance and humidity sensing mechanism were also tested. Research results show that Cs4PbBr6 nanocrystals contain abundant bromine vacancy defects and have good hydrophilicity. The Cs4PbBr6 nanocrystals humidity sensor has an ultra-high response value of 2.32×105, a hysteresis of 5.14%, excellent linearity, a short response/recovery time of 14 s/10 s, excellent long-term stability and gas selectivity in the humidity range of 11%—98%. It is capable for non-contact switch and breath detection. The excellent humidity sensing properties of Cs4PbBr6 nanocrystals are attributed to the bromine vacancy defects in the material, which serve as active sites to promote the adsorption and dissociation of water molecules.
|
Published: 10 February 2025
Online: 2025-02-05
|
|
|
|
1 Ku C A, Chung C K. Sensors, 2023, 23, 2328. 2 Morchid A, El Alami R, Raezah A A, et al. Ain Shams Engineering Journal, 2024, 15, 102509. 3 Duan Z, Jiang Y, Tai H. Journal of Materials Chemistry C, 2021, 9(42), 14963. 4 Mei A, Chen W, Yang Z, et al. Angewandte Chemie International Edition, 2023, 62(19), e202301440. 5 Jiang K, Zhao H, Dai J, et al. ACS Applied Materials & Interfaces, 2016, 8(38), 25529. 6 Park K J, Gong M S. Sensors & Actuators B: Chemical, 2017, 246, 53. 7 Hendi A A. Journal of Nanoelectronics and Optoelectronics, 2015, 10(6), 734. 8 Tambwe K, Ross N, Baker P, et al. Materials, 2022, 15(12), 4146. 9 Weng Z, Qin J, Umar A A, et al. Advanced Functional Materials, 2019, 29(24), 1902234. 10 Pi C, Chen W, Zhou W, et al. Journal of Materials Chemistry C, 2021, 9(34), 11299. 11 Pi C, Yu X, Chen W, et al. Materials Advances, 2021, 2(3), 1043. 12 Yin J, Yang H, Song K, et al. The Journal of Physical Chemistry Letters, 2018, 9(18), 5490. 13 Mohammed O F. The Journal of Physical Chemistry Letters, 2019, 10(19), 5886. 14 Wei Y, Sun R, Li Y, et al. ChemNanoMat, 2020, 6(2), 258. 15 Yin J, Zhang Y, Bruno A, et al. ACS Energy Letters, 2017, 2(12), 2805. 16 Suresh S, Subramaniam M R, Hazra S, et al. ACS Omega, 2023, 8(5), 4616. 17 Shi Z, Yang Y, Sun X Y, et al. RSC Advances, 2021, 11(27), 16453. 18 Li X B, Huang W T, Zhang R R, et al. Rare Metals, 2022, 41(4), 1230. 19 Xia P, Lu Y, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12(35), 39720. 20 Li C T, Chong M X, Zhang L X, et al. Sensors and Actuators B: Chemical, 2023, 379, 133240. 21 Xing Y, Zhang L X, Xu H, et al. Sensors and Actuators B: Chemical, 2021, 349, 130816. 22 Wang Y, Zhao S, Sheng J, et al. Materials Reports, 2022, 36(20),SSSSS 21060183(in Chinese). 王延杰, 赵世界, 盛俊杰, 等. 材料导报, 2022, 36(20), 21060183. 23 Anderson Jr J H, Parks G A. The Journal of Physical Chemistry, 1968, 72(10), 3662. 24 Jiang K, Zhao H, Fei T, et al. Sensors and Actuators B: Chemical, 2016, 222, 440. 25 Li P, Yang F. Materials Science and Engineering B, 2023, 298, 116902. 26 Agmon N. Chemical Physics Letters, 1995, 244(5-6), 456. 27 Ye W, Cao Q, Cheng X F, et al. Journal of Materials Chemistry A, 2020, 8(34), 17675. 28 Chong M X, Li C T, Zhang L X, et al. Sensors and Actuators A: Physical, 2023, 351, 114153. 29 Mi Y, Li P. Results in Physics, 2023, 50, 106560. 30 Yang C, Zhang H, Gu W, et al. Current Applied Physics, 2022, 43, 57. |
|
|
|