METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Power Ultrasound on Forming Process of Three-dimensional Nickel Microstructure in Mask-less Localized Electrodeposition |
WU Menghua1, JIANG Bingchun1, XIAO Yuqing2, JIA Weiping2,*
|
1 School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523083, Guangdong, China 2 School of Mechanical Engineering, Dalian University, Dalian 116622, Liaoning, China |
|
|
Abstract Improving the forming accuracy of three-dimensional metal microstructures with high aspect ratio has always been a research focus in microelectronic information manufacturing, MEMS and other fields. In the deposition process of mask-less localized electrodeposition (MLED) of micro-nickel pillars with diameter of 60 μm and aspect ratio of 8∶1, power ultrasound of certain strength, in the same direction to the electric field, was applied for exploring the influence of magnetic field on forming process of three-dimensional nickel microstructure in MLED. A comparative study of the average volumetric deposition rate, surface morphology and grain size during MLED of micro-nickel pillars without and under action of power ultrasound was carried out. The results show that the power ultrasound may increase the average volumetric deposition rate of MLED to 28%—39% compared to without power ultrasonic action, and the the highest average volumetric deposition rate was 15 340.46 μm3/s;at the same time, the effect of power ultrasound may further refine the grain size of sedimentary bodies, and the average grain size may reach 46.37 nm. Furthermore, the power ultrasound may improve the cylindricity and the microscopic surface morphology of micro-nickel pillars to a certain extent during MLED.
|
Published: 10 January 2025
Online: 2025-01-10
|
|
|
|
1 Muhammad H A, Krishna K S, Rex S, et al. International Journal of Electrical Machining, 2022, 27, 16. 2 Xu J K, Ren W F, Lian Z X, et al. International Journal of Advanced Manufacturing Technology, 2020, 110, 1731. 3 Murali M S, Abishek B K, Varun S K. Journal of Manufacturing Science and Engineering, 2015, 137, 021006-1. 4 Wang W, Ming P M, Zhang X M, et al. Additive Manufacturing, 2022, 50, 102582-1. 5 Liu K, Niu Q B, Wang F L. Materials Science and Engineering B, 2023, 289, 116236-1. 6 Julian H, Barnik M, Cathelijn V N, et al. Nano Letters, 2021, 21, 9093. 7 Sundaram M, Brant A, Rajurkar K. CIRP Annals-Manufacturing Technology, 2022, 71, 153. 8 Bi X L, Meng L C. Micromachines, 2022, 13, 704-1. 9 Xiao Y Q, Wu M H, Jia W P. Procedia CIRP, 2022, 113, 552. 10 Wu J H, Wu M H, Zuo S S, et al. Materials Reports, 2020, 34(Z1), 427 (in Chinese). 吴建辉, 吴蒙华, 佐珊珊, 等.材料导报, 2020, 34(Z1), 427. 11 Li X C, Ming P M, Ao S S, et al. International Journal of Machine Tools and Manufacture, 2022, 173, 103848-1. 12 Jia W P, Wu M H, Jia Z Y, et al. Materials Reports, 2020, 34(1), 02017 (in Chinese). 贾卫平, 吴蒙华, 贾振元, 等.材料导报, 2020, 34(1), 02017. 13 Aliofkhazraei M, Frank C W, Giovanni Z, et al. Applied Surface Science Advances, 2021, 6, 100141-1. 14 Yuan B X, Ma C Y, Zhang S D. Materials Protection, 2022, 55(5), 92 (in Chinese). 苑博旭, 马春阳, 张思栋. 材料保护, 2022, 55(5), 92. 15 Ignacio T, Yi Z, Madan P, et al. Surface and Coatings Technology, 2015, 276, 89. 16 Josiel M C, Ambrósio-Florêncio A N. Ultrasonics Sonochemistry, 2020, 68, 105193-1. 17 Li N. Plating and Finishing, 2023, 45(7), 8 (in Chinese). 李宁. 电镀与精饰, 2023, 45(7), 8. 18 Guo J, Yao X L. International Journal of Electrochemical Science, 2022, 17, 220740-1. 19 Zhang H G, Zhang N, Fang F Z. Ultrasonics-Sonochemistry, 2020, 62, 104858-1. 20 Wang Y, Xiao W X, Ma K, et al. Corrosion Science, 2023, 224, 111546-1. 21 Wang X, Niu Z W, Wang X M, et al. Materials Reports, 2021, 35(5), 05107 (in Chinese). 王旭, 牛宗伟, 王晓明, 等. 材料导报, 2021, 35(5), 05107. 22 Xia F F, Wu M H, Jia Z Y, et al. Journal of Functional Materials, 2008, 39(4), 690(in Chinese). 夏法锋, 吴蒙华, 贾振元, 等.功能材料, 2008, 39(4), 690. 23 Xue J H, Wu M H. Plating and Finishing, 2016, 38(12), 12(in Chinese). 雪金海, 吴蒙华.电镀与精饰, 2016, 38(12), 12. 24 Qian N K, Wu M H, Jia W P, et al. Rare Metal Materials and Engineering, 2021, 50(3), 918(in Chinese). 钱宁开, 吴蒙华, 贾卫平, 等.稀有金属材料与工程, 2021, 50(3), 918. 25 Li H W, Xing L L, Niu Y S, et al. Materials Research, 2020, 23, e20200291-1. 26 Huang A N, Zhang Z, Fu B, et al. Journal of Applied Acoustics, 2022, 41(1), 103 (in Chinese). 黄安楠, 张震, 傅波, 等. 应用声学, 2022, 41(1), 103. 27 Li A X, Zhu Z W, Xue Z M, et al. Materials Research Bulletin, 2022, 150, 111778-1. 28 Ma C Y, Yu W Y, Jiang M Z, et al. Ceramics International, 2018, 44, 5163. 29 Cordero Z C, Knight B E, Schuh C A. International Materials Reviews, 2016, 61, 494. 30 Gong C M. Study on preparation of nanocrystalline copper by pulse electrodeposition and its tribological properties. Master's Thesis, Guangdong University of Technology, China, 2021 (in Chinese). 龚承敏. 脉冲电沉积制备纳米晶铜及其摩擦学特性研究. 硕士学位论文, 广东工业大学, 2021. 31 Ming W. Study of mechanical properties and deformation mechanism of nanocrystalline nickel under cryogenic temperature. Master's Thesis, North China University of Technology, China, 2021 (in Chinese). 闵威. 纳米晶镍低温力学性能及变形机理研究. 硕士学位论文, 北方工业大学, 2021. |
|
|
|