INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Thermal Shock Resistance of Double-glow Plasma Ta/TaC Coating on Graphite Surface |
WANG Yan1, YANG Kai1, LYU Xuming2,3, DANG Bo1, WEI Dongbo1, ZHANG Pingze1,*
|
1 School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2 Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China 3 Science and Technology on Particle Transport and Separation Key National Defense Laboratory, Tianjin 300180, China |
|
|
Abstract In order to alleviate the thermal mismatch between the graphite electrode surface coating and the substrate due to the disparity in mechanical properties and coefficient of thermal expansion, Ta, TaC and Ta/TaC coatings were prepared on the graphite surface by double-glow technology. XRD results show that the surface phase of Ta coating is mainly composed of Ta, Ta4C3 and Ta2C, while the surface of TaC and Ta/TaC coating is pure TaC phase. SEM results show that all coatings are composed of interdiffusion layer and surface deposition layer, and the interior is uniform and dense. Compared with TaC, Ta is easier to diffuse into the graphite, and TaC is easier to grow on Ta under the same conditions. The mechanical properties test results show that Ta coating can effectively improve the binding quality and microhardness of TaC coating and substrate because of its excellent physical buffering effect. The thermal shock results show that the single-layer TaC coating is spalling se-riously due to great stress mismatch after 40 times of cycles between room temperature and 650 ℃. Ta/TaC composite coating can effectively alleviate the stress mismatch in the process of cold and hot cycling due to the existence of Ta transition layer. No cracks are found on the surface and the film-base interface is still good. The thermal shock resistance of the composite coating is significantly improved.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
|
|
1 Jiang Y, Ye C C, Ru H Q, et al. Rare Metal Materials and Engineering, 2018(S1), 4 (in Chinese). 姜岩, 叶超超, 茹红强, 等. 稀有金属材料与工程, 2018(S1), 4. 2 Wang P, Han W B, Jin X X, et al. Journal of Alloys & Compounds, 2015, 629, 124. 3 Qiang X, Li H, Zhang Y, et al. Corrosion Science, 2011, 53(1), 523. 4 Wang K, Guo Q, Zhang G, et al. Surface and Coatings Technology, 2007, 201(16-17), 7472. 5 Xue L M, Jin Y Z, An B C, et al. Carbon, 2018(4), 42 (in Chinese). 薛丽梅, 金燚翥, 安保成, 等. 炭素, 2018(4), 42. 6 Chen K, Yang H, Liang F, et al. Acs Applied Materials & Interfaces, 2018, 10(1), 909. 7 Zhang Y L, Li H J, Hu Z X, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(7), 2118. 8 Zhao J, Liu L, Guo Q, et al. Materials Letters, 2006, 60(16), 1964. 9 Tian Y, Jiang Y, Fu W L. Refractories, 2023, 57(1), 6 (in Chinese). 田原, 姜岩, 付琬璐. 耐火材料, 2023, 57(1), 6. 10 Wang C, Guo B, Lu P, et al. Ceramics International, 2022, 48(9), 12450. 11 Shen X S, Wang S, Li W, et al. Journal of Synthetic Crystals, 2017, 46(6), 7 (in Chinese). 沈小松, 王松, 李伟等. 人工晶体学报, 2017, 46(6), 7. 12 Kumar S, Mondal S, Kumar A, et al. Coatings, 2017, 7(7), 101. 13 Kim H M, Choi S C, Kim Y, et al. Journal of Ceramic Processing Research, 2020, 21(1), 92. 14 Balani K, Gonzalez G, Agarwal A, et al. Journal of the American Ceramic Society, 2006, 89(4), 1419. 15 Kim H M, Choi K, Shim K B, et al. Korean Journal of Materials Research, 2018, 28(2), 75. 16 Nakamura D, Suzumura A, Shigetoh K. Applied Physics Letters, DOI: 10.106311.4913413. 17 Wang K, Guo Q, Zhang G, et al. Surface & Coatings Technology, 2007, 201(16-17), 7472. 18 Wang P, Han W B, Zhang X H, et al. Ceramics International, 2015, 41(5), 6941. 19 Jiang Y, Ye C, Ru H, et al. Ceramics International, 2018, 44(5), 5171. 20 Xu Z, Liu X, Li Z, et al. Chinese Journal of Mechanical Engineering, 2002, 15(2), 186. 21 Gao Y, Xu J Y, Gao Q, et al. Hot Working Technology, 2006, 35(6), 56. 22 Gao Y, Xu J Y, Gao Q, et al. Hot Working Technology, 2007(8), 78 (in Chinese). 高原, 徐晋勇, 高清, 等. 热加工工艺, 2007(8), 78. 23 Liu M, Li S, Gao C H. Acta Metrologica Sinica,2020, 41(6), 696 (in Chinese). 刘明, 李烁, 高诚辉. 计量学报, 2020, 41(6), 696. 24 La L, Wang L, Liang F, et al. Surface and Coatings Technology, 2023, 464, 129429. 25 Meng Y, Deng J, Wu J, et al. Journal of Materials Processing Technology, 2022, 304, 117570. 26 Chen Q H, Deng H B, Xiao Z C, et al. Carbon, 2007(2), 11 (in Chinese). 陈青华, 邓红兵, 肖志超, 等. 炭素, 2007(2), 11. 27 Yang H Z, Liu B. Rare Metal Materials and Engineering, 2022, 51(5), 1773 (in Chinese). 杨红志, 刘波. 稀有金属材料与工程, 2022, 51(5), 1773. 28 Li G D, Xiong X, Huang B Y, et al. The Chinese Journal of Nonferrous Metals, 2007(3) 360 (in Chinese). 李国栋, 熊翔, 黄伯云, 等. 中国有色金属学报, 2007(3), 360. 29 Sun H Q, Zhang J X, Yan D R, et al. Heat Treatment of Metals, 2009, 34(5), 46 (in Chinese). 孙海全, 张建新, 阎殿然, 等. 金属热处理, 2009, 34(5), 46. 30 Lang Q K, Zhang J, Ma H L, et al. Vacuum, 2015, 52(6), 10 (in Chinese). 郎清凯, 张钧, 马海玲, 等. 真空, 2015, 52(6), 10. |
|
|
|