INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on the Principle and Modification of CeO2 Photocatalysis |
LIU Morigejile1, BAO Morigen1, BAI Lu1, XIE Bing3, YU Xiaoli4, CAO Hongzhang4, ZHAO Danlei5, ZHAO Siqin1,2,*
|
1 School of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot 010022, China 2 Inner Mongolia Autonomous Region Key Laboratory of Environmental Chemistry, Hohhot 010022, China 3 China North Rare Earth (Group) High Tech Co., Ltd., Baotou 014010, Inner Mongolia, China 4 National Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou 014060, Inner Mongolia, China 5 College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010022, China |
|
|
Abstract Photocatalytic technology is an emerging environmental protection technology that can be used to treat organic and inorganic pollutants in water and air. CeO2 photocatalysts have attracted much attention due to their high stability and strong light-absorption. However pure CeO2 can absorb only a quite small part of natural visible light, restraining its photo-induced electron generation reaction. In photocatalysis conditions, CeO2 cannot directly utilize visible light to promote charge separation, thereby limiting its catalytic activity and efficiency. Starting from the basic properties, structure, and principles of CeO2, this review summarizes the modification of CeO2 using methods such as loading, doping, and semiconductor hybridization, and discusses the future development prospect of this field.
|
Published: 10 November 2024
Online: 2024-11-11
|
|
Fund:National Natural Science Foundation of China (22266025), Inner Mongolia Natural Science Joint Fund Project (2022LHMS02001), Inner Mongolia Normal University Basic Research Business Fee Special Project (2022JBTD009), and Northern Rare Earth Project (Project) Technology Development Fund (2022H2490). |
|
|
1 Pan J,Shen S, Zhou W, et al. Acta Physico-Chimica Sinica, 2020, 36(3), 1905068. 2 Lv S W, Cong Y, Chen X, et al. Chemical Engineering Journal, 2022, 433, 133605. 3 Cao Y D, Liu C B, Chen F, et al. Materials Reports, 2023, 37(3), 21070275 (in Chinese). 曹一达, 刘成宝, 陈丰, 等. 材料导报, 2023, 37(3), 21070275. 4 Shui B Y, Song X S, Fan W J. Chemical Industry and Engineering Progress, 2021, 40(S2), 356 (in Chinese). 水博阳, 宋小三, 范文江. 化工进展, 2021, 40(S2), 356. 5 Xu J, Song S Y, Zhang H J. Chemistry Education, 2019, 40 (8), 1 (in Chinese). 徐晶, 宋术岩, 张洪杰. 化学教育, 2019, 40(8), 1. 6 Nemiwal M, Sillanpää M, Banat F, et al. Inorganic Chemistry Communications, 2022, 143, 109739. 7 Saravanakumar K, Muthupoongodi S, Muthuraj V. Journal of Rare Earths, 2019, 37(8), 853. 8 Liu G, Wang H, Chen D, et al. Separation and Purification Technology, 2020, 237, 116329. 9 Castañeda C, Gutiérrez K, Alvarado I, et al. Journal of Chemical Technology & Biotechnology, 2020, 95(12), 3213. 10 Hao Y, Chen S, Wu L, et al. Journal of Alloys and Compounds, 2021, 867, 159030. 11 Yang D. Preparation andphotocatalytic performance of defective mesoporous cerium dioxide microspheres and their composites Master's Thesis, Heilongjiang University, China, 2022 (in Chinese). 杨德才. 缺陷型介孔二氧化铈微球及其复合体的制备与光催化性能研究. 硕士学位论文, 黑龙江大学, 2022. 12 Ranjith K S, Saravanan P, Chen S H, et al. The Journal of Physical Chemistry C, 2014, 118(46), 27039. 13 Bahadoran A, Ramakrishna S, Masudy-Panah S, et al. Applied Surface Science, 2021, 568, 150957. 14 Liu F. Preparation andphotocatalytic redox performance of modified cerium dioxide based composite nanomaterials. Master's thesis, Xiamen University, China, 2019 (in Chinese). 刘芳. 改性二氧化铈基复合纳米材料的制备及其光催化氧化还原性能研究. 硕士学位论文, 厦门大学, 2019. 15 Ren X N. Study on the surface active sites and synergistic catalysis of cerium dioxide. Master's Thesis, Dalian University of Technology, China, 2019 (in Chinese). 任晓宁. 二氧化铈表面活性位点及其协同催化研究. 硕士学位论文, 大连理工大学, 2019. 16 Ma W,Mashimo T, Tamura S, et al. Ceramics International, 2020, 46(17), 26502. 17 Sakthivel T S, Reid D L, Bhatta U M, et al. Nanoscale, 2015, 7(12), 5169. 18 Wu L,Wiesmann H J, Moodenbaugh A R, et al. Physical Review B, 2004, 69(12), 125415. 19 Jiang F, Wang S, Liu B, et al. ACS Catalysis, 2020, 10(19), 11493. 20 Atla S B, Wu M N, Pan W, et al. Materials Characterization, 2014, 98, 202. 21 Hezam A, Namratha K, Drmosh Q A, et al. ACS Applied Nano Materials, 2019, 3(1), 138. 22 Zhang S,Tian Z, Ma Y, et al. ACS Catalysis, 2023, 13(7), 4629. 23 Guan J R. Construction of CeO2-C3N4 composite photocatalytic material and study on photocatalytic conversion of CO2. Master’s Thesis, Jiangsu University, China, 2019 (in Chinese). 关静茹. CeO2-C3N4复合光催化材料的构筑及光催化转化CO2研究. 硕士学位论文, 江苏大学, 2019. 24 Liu Y, Lin Y R, Qin P Y, et al. Journal of Shenyang Normal University (Natural Science Edition), 2021, 39 (4), 289 (in Chinese). 刘颖, 林雨冉, 覃佩怡, 等.沈阳师范大学学报(自然科学版), 2021, 39(4), 289. 25 Lu X, Li X,Qian J, et al. Journal of Alloys and Compounds, 2016, 661, 363. 26 Kusmierek E. Catalysts, 2020, 10(12), 1435. 27 Yin D, Zhao F, Zhang L, et al. RSC Advances, 2016, 6(105), 103795. 28 Fauzi A A, Jalil A A, Hassan N S, et al. Chemosphere, 2022, 286, 131651. 29 Liu W Q. Study on the synthesis of cerium dioxide with different morpho-logies and the performance of its compositephotocatalyst. Master’s Thesis, Beijing University of Chemical Technology, China, 2019 (in Chinese). 刘文琦. 不同形貌二氧化铈的合成及其复合光催化剂的性能研究. 硕士学位论文, 北京化工大学, 2021. 30 Li Q Y, Xiao L J, Li W Z. New Chemical Materials, 2021, 49(12), 280 (in Chinese). 李巧云, 肖林久, 李文泽. 化工新型材料, 2021, 49(12), 280. 31 Kulal N, Vetrivel R, Ganesh Krishna N S, et al. ACS Applied Nano Materials, 2021, 4(5), 4388. 32 Yang Z X,Luo G X, Lu Z S, et al. The Journal of Chemical Physics, 2007, 127,074704. 33 Cao F X, Song Z Y, Zhang Z M, et al. ACS Applied Materials & Interfaces, 2021, 13(21), 24957. 34 Chen H R,Rong W H, Huang Z C, et al. The Journal of Chemical Phy-sics, 2019, 151, 184703. 35 Pelli Cresi J S, Silvagni E, Bertoni G, et al. The Journal of Chemical Physics, 2020, 152, 114704 . 36 Kettner M, Duchoň T, Wolf M J, et al. The Journal of Chemical Physics, 2019, 151, 044701. 37 van Dao D, Jung H D, Nguyen T T D, et al. Journal of Materials Chemistry A, 2021, 9(16), 10217. 38 Yang S Y, Wang Q, Zhang J S, et al. Journal of Guizhou Normal University (Natural Science Edition), 2023, 41 (1), 87 (in Chinese). 杨绍艳, 王芹, 张俊山, 等. 贵州师范大学学报(自然科学版), 2023, 41(1), 87. 39 Gu K, Liu Y J, Zhao J G, et al. Carbon Techniques, 2022, 41 (6), 18 (in Chinese). 谷可, 刘雅娟, 赵建国, 等.炭素技术, 2022, 41(6), 18. 40 Xu B, Yang H, Zhang Q, et al. ChemCatChem, 2020, 12(9), 2638. 41 Adler S B, Smith J W, Reimer J A. The Journal of Chemical Physics, 1993, 98(9), 7613. 42 Yuan K, Zhang Y W. Journal of the Chinese Society of Rare Earths, 2020, 38(3), 326 (in Chinese). 袁堃, 张亚文. 中国稀土学报, 2020, 38(3), 326. 43 Yildirim S, Akalin S A, Oguzlar S, et al. Journal of Materials Science: Materials in Electronics, 2019, 30, 13749. 44 Pumera M. Materials Today, 2011, 14(7-8), 308. 45 Lu K Q,Xin X, Zhang N, et al. Journal of Materials Chemistry A, 2018, 6(11), 4590. 46 Sun F L, Zhang W, Yu Y F, et al. Materials Reports, 2023, 37 (3), 22120058(in Chinese). 孙富丽, 张炜, 俞一帆, 等. 材料导报, 2023, 37(3), 22120058. 47 Ha H, Yoon S,An K, et al. ACS Catalysis, 2018, 8(12), 11491. 48 Kye S H, Park H S, Zhang R, et al. The Journal of Chemical Physics, 2020, 152, 054715. 49 Hu C, Jing K Q, Lin X Q, et al. Catalysis Letters, 2022, 152(2), 503. 50 Kalita L, Sonowal K, Basyach P, et al. ACS Omega, 2023, 8(13), 11768. 51 Chen J, Pham H N, Mon T, et al. ACS Applied Nano Materials, 2023, 6(6), 4544. 52 Cai J, Li D, Jiang L, et al. Energy & Fuels, 2023, 37(7), 4878. 53 Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. ACS Applied Materials & Interfaces, 2012, 4(7), 3718. |
|
|
|